Mareike Saathoff, Simone Kosol, Torsten Semmler, Karsten Tedin, Nicole Dimos, Johannes Kupke, Maria Seidel, Fereshteh Ghazisaeedi, Micela Condor Jonske, Silver A Wolf, Benno Kuropka, Wojciech Czyszczoń, Dmitry Ghilarov, Stefan Grätz, Jonathan G Heddle, Bernhard Loll, Roderich D Süssmuth, Marcus Fulde
{"title":"基因扩增导致革兰氏阴性菌对白杆菌素产生高水平耐药性。","authors":"Mareike Saathoff, Simone Kosol, Torsten Semmler, Karsten Tedin, Nicole Dimos, Johannes Kupke, Maria Seidel, Fereshteh Ghazisaeedi, Micela Condor Jonske, Silver A Wolf, Benno Kuropka, Wojciech Czyszczoń, Dmitry Ghilarov, Stefan Grätz, Jonathan G Heddle, Bernhard Loll, Roderich D Süssmuth, Marcus Fulde","doi":"10.1371/journal.pbio.3002186","DOIUrl":null,"url":null,"abstract":"<p><p>Antibiotic resistance is a continuously increasing concern for public healthcare. Understanding resistance mechanisms and their emergence is crucial for the development of new antibiotics and their effective use. The peptide antibiotic albicidin is such a promising candidate that, as a gyrase poison, shows bactericidal activity against a wide range of gram-positive and gram-negative bacteria. Here, we report the discovery of a gene amplification-based mechanism that imparts an up to 1000-fold increase in resistance levels against albicidin. RNA sequencing and proteomics data show that this novel mechanism protects Salmonella Typhimurium and Escherichia coli by increasing the copy number of STM3175 (YgiV), a transcription regulator with a GyrI-like small molecule binding domain that traps albicidin with high affinity. X-ray crystallography and molecular docking reveal a new conserved motif in the binding groove of the GyrI-like domain that can interact with aromatic building blocks of albicidin. Phylogenetic studies suggest that this resistance mechanism is ubiquitous in gram-negative bacteria, and our experiments confirm that STM3175 homologs can confer resistance in pathogens such as Vibrio vulnificus and Pseudomonas aeruginosa.</p>","PeriodicalId":20240,"journal":{"name":"PLoS Biology","volume":"21 8","pages":"e3002186"},"PeriodicalIF":7.8000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10414762/pdf/","citationCount":"2","resultStr":"{\"title\":\"Gene amplifications cause high-level resistance against albicidin in gram-negative bacteria.\",\"authors\":\"Mareike Saathoff, Simone Kosol, Torsten Semmler, Karsten Tedin, Nicole Dimos, Johannes Kupke, Maria Seidel, Fereshteh Ghazisaeedi, Micela Condor Jonske, Silver A Wolf, Benno Kuropka, Wojciech Czyszczoń, Dmitry Ghilarov, Stefan Grätz, Jonathan G Heddle, Bernhard Loll, Roderich D Süssmuth, Marcus Fulde\",\"doi\":\"10.1371/journal.pbio.3002186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Antibiotic resistance is a continuously increasing concern for public healthcare. Understanding resistance mechanisms and their emergence is crucial for the development of new antibiotics and their effective use. The peptide antibiotic albicidin is such a promising candidate that, as a gyrase poison, shows bactericidal activity against a wide range of gram-positive and gram-negative bacteria. Here, we report the discovery of a gene amplification-based mechanism that imparts an up to 1000-fold increase in resistance levels against albicidin. RNA sequencing and proteomics data show that this novel mechanism protects Salmonella Typhimurium and Escherichia coli by increasing the copy number of STM3175 (YgiV), a transcription regulator with a GyrI-like small molecule binding domain that traps albicidin with high affinity. X-ray crystallography and molecular docking reveal a new conserved motif in the binding groove of the GyrI-like domain that can interact with aromatic building blocks of albicidin. Phylogenetic studies suggest that this resistance mechanism is ubiquitous in gram-negative bacteria, and our experiments confirm that STM3175 homologs can confer resistance in pathogens such as Vibrio vulnificus and Pseudomonas aeruginosa.</p>\",\"PeriodicalId\":20240,\"journal\":{\"name\":\"PLoS Biology\",\"volume\":\"21 8\",\"pages\":\"e3002186\"},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10414762/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pbio.3002186\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3002186","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Gene amplifications cause high-level resistance against albicidin in gram-negative bacteria.
Antibiotic resistance is a continuously increasing concern for public healthcare. Understanding resistance mechanisms and their emergence is crucial for the development of new antibiotics and their effective use. The peptide antibiotic albicidin is such a promising candidate that, as a gyrase poison, shows bactericidal activity against a wide range of gram-positive and gram-negative bacteria. Here, we report the discovery of a gene amplification-based mechanism that imparts an up to 1000-fold increase in resistance levels against albicidin. RNA sequencing and proteomics data show that this novel mechanism protects Salmonella Typhimurium and Escherichia coli by increasing the copy number of STM3175 (YgiV), a transcription regulator with a GyrI-like small molecule binding domain that traps albicidin with high affinity. X-ray crystallography and molecular docking reveal a new conserved motif in the binding groove of the GyrI-like domain that can interact with aromatic building blocks of albicidin. Phylogenetic studies suggest that this resistance mechanism is ubiquitous in gram-negative bacteria, and our experiments confirm that STM3175 homologs can confer resistance in pathogens such as Vibrio vulnificus and Pseudomonas aeruginosa.
期刊介绍:
PLOS Biology is an open-access, peer-reviewed general biology journal published by PLOS, a nonprofit organization of scientists and physicians dedicated to making the world's scientific and medical literature freely accessible. The journal publishes new articles online weekly, with issues compiled and published monthly.
ISSN Numbers:
eISSN: 1545-7885
ISSN: 1544-9173