RNA m5C甲基化通过巨噬细胞重编程协调BLCA进展

IF 5.3 2区 医学 Q1 Biochemistry, Genetics and Molecular Biology
Dali Yan, Yongsong Xie, Liyuan Huang, Yi Zhang, Runhuan Gu, Huaibing Xie, Xing Huang, Hao Luo
{"title":"RNA m5C甲基化通过巨噬细胞重编程协调BLCA进展","authors":"Dali Yan, Yongsong Xie, Liyuan Huang, Yi Zhang, Runhuan Gu, Huaibing Xie, Xing Huang, Hao Luo","doi":"10.1111/jcmm.17826","DOIUrl":null,"url":null,"abstract":"Recently, epigenetics showed essential roles in tumour microenvironment (TME) and immunotherapy response, however, the functions of RNA 5‐methylcytosine (m5C) modification in TME remains unknown. According to 13 m5C regulators, we evaluated 412 BLCA patients from The Cancer Genome Atlas (TCGA) database. The m5C score was constructed by unsupervised clustering analysis and principal component analysis (PCA) algorithms. Gene set variation analysis (GSVA), ESTIMATE algorithm, and immunohistochemical (IHC) staining were performed. Macrophage chemotaxis assay was used to assess the M2 macrophages. Among the 412 patients, the frequency of mutation was 13%. m5C regulators was expressed significantly in BLCA tissue compared with normal tissue. Then, two m5C methylation modification patterns were identified with dissimilar TME cell infiltration patterns. The C1 alteration pattern in the m5C cluster was connected with better survival. In addition, we found that NSUN6 was highly correlated with recruitment of macrophages via bioinformatics and IHC. Further experiment validated that NSUN6 promoted HDAC10 expression by mediating m5C methylation, inhibited the transcription of macrophage‐associated chemokines and thus inhibited the recruitment of M2 macrophages. The m5C score constructed by m5C modification pattern showed that high m5C score group had a better prognosis. This study uncovered the significant roles of m5C modifications in modulating the TME and indicated that NSUN6 could inhibit the recruitment of M2 macrophages via m5C methylation, which provided novel insight into epigenetic regulation of TME and clinical suggestions for immunotherapeutic strategies.","PeriodicalId":15215,"journal":{"name":"Journal of Cellular and Molecular Medicine","volume":"27 16","pages":"2398-2411"},"PeriodicalIF":5.3000,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jcmm.17826","citationCount":"0","resultStr":"{\"title\":\"RNA m5C methylation orchestrates BLCA progression via macrophage reprogramming\",\"authors\":\"Dali Yan, Yongsong Xie, Liyuan Huang, Yi Zhang, Runhuan Gu, Huaibing Xie, Xing Huang, Hao Luo\",\"doi\":\"10.1111/jcmm.17826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, epigenetics showed essential roles in tumour microenvironment (TME) and immunotherapy response, however, the functions of RNA 5‐methylcytosine (m5C) modification in TME remains unknown. According to 13 m5C regulators, we evaluated 412 BLCA patients from The Cancer Genome Atlas (TCGA) database. The m5C score was constructed by unsupervised clustering analysis and principal component analysis (PCA) algorithms. Gene set variation analysis (GSVA), ESTIMATE algorithm, and immunohistochemical (IHC) staining were performed. Macrophage chemotaxis assay was used to assess the M2 macrophages. Among the 412 patients, the frequency of mutation was 13%. m5C regulators was expressed significantly in BLCA tissue compared with normal tissue. Then, two m5C methylation modification patterns were identified with dissimilar TME cell infiltration patterns. The C1 alteration pattern in the m5C cluster was connected with better survival. In addition, we found that NSUN6 was highly correlated with recruitment of macrophages via bioinformatics and IHC. Further experiment validated that NSUN6 promoted HDAC10 expression by mediating m5C methylation, inhibited the transcription of macrophage‐associated chemokines and thus inhibited the recruitment of M2 macrophages. The m5C score constructed by m5C modification pattern showed that high m5C score group had a better prognosis. This study uncovered the significant roles of m5C modifications in modulating the TME and indicated that NSUN6 could inhibit the recruitment of M2 macrophages via m5C methylation, which provided novel insight into epigenetic regulation of TME and clinical suggestions for immunotherapeutic strategies.\",\"PeriodicalId\":15215,\"journal\":{\"name\":\"Journal of Cellular and Molecular Medicine\",\"volume\":\"27 16\",\"pages\":\"2398-2411\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2023-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jcmm.17826\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cellular and Molecular Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.17826\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular and Molecular Medicine","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.17826","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

近年来,表观遗传学在肿瘤微环境(TME)和免疫治疗反应中发挥了重要作用,然而,RNA 5-甲基胞嘧啶(m5C)修饰在TME中的功能尚不清楚。根据13个m5C调节因子,我们评估了来自癌症基因组图谱(TCGA)数据库的412名BLCA患者。m5C评分采用无监督聚类分析和主成分分析(PCA)算法构建。进行基因集变异分析(GSVA)、ESTIMATE算法和免疫组化(IHC)染色。采用巨噬细胞趋化试验评估M2巨噬细胞。在412例患者中,突变频率为13%。与正常组织相比,m5C调节因子在BLCA组织中表达显著。然后,鉴定出两种m5C甲基化修饰模式具有不同的TME细胞浸润模式。m5C群的C1改变模式与更好的存活率有关。此外,我们通过生物信息学和免疫组化发现NSUN6与巨噬细胞的募集高度相关。进一步实验证实NSUN6通过介导m5C甲基化促进HDAC10的表达,抑制巨噬细胞相关趋化因子的转录,从而抑制M2巨噬细胞的募集。m5C修改模式构建的m5C评分显示,m5C评分高组预后较好。本研究揭示了m5C修饰在TME调控中的重要作用,并表明NSUN6可以通过m5C甲基化抑制M2巨噬细胞的募集,这为TME的表观遗传调控提供了新的见解,并为临床免疫治疗策略提供了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

RNA m5C methylation orchestrates BLCA progression via macrophage reprogramming

RNA m5C methylation orchestrates BLCA progression via macrophage reprogramming
Recently, epigenetics showed essential roles in tumour microenvironment (TME) and immunotherapy response, however, the functions of RNA 5‐methylcytosine (m5C) modification in TME remains unknown. According to 13 m5C regulators, we evaluated 412 BLCA patients from The Cancer Genome Atlas (TCGA) database. The m5C score was constructed by unsupervised clustering analysis and principal component analysis (PCA) algorithms. Gene set variation analysis (GSVA), ESTIMATE algorithm, and immunohistochemical (IHC) staining were performed. Macrophage chemotaxis assay was used to assess the M2 macrophages. Among the 412 patients, the frequency of mutation was 13%. m5C regulators was expressed significantly in BLCA tissue compared with normal tissue. Then, two m5C methylation modification patterns were identified with dissimilar TME cell infiltration patterns. The C1 alteration pattern in the m5C cluster was connected with better survival. In addition, we found that NSUN6 was highly correlated with recruitment of macrophages via bioinformatics and IHC. Further experiment validated that NSUN6 promoted HDAC10 expression by mediating m5C methylation, inhibited the transcription of macrophage‐associated chemokines and thus inhibited the recruitment of M2 macrophages. The m5C score constructed by m5C modification pattern showed that high m5C score group had a better prognosis. This study uncovered the significant roles of m5C modifications in modulating the TME and indicated that NSUN6 could inhibit the recruitment of M2 macrophages via m5C methylation, which provided novel insight into epigenetic regulation of TME and clinical suggestions for immunotherapeutic strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.00
自引率
1.90%
发文量
496
审稿时长
28 weeks
期刊介绍: Bridging physiology and cellular medicine, and molecular biology and molecular therapeutics, Journal of Cellular and Molecular Medicine publishes basic research that furthers our understanding of the cellular and molecular mechanisms of disease and translational studies that convert this knowledge into therapeutic approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信