部分吸收介质中形态形成梯度的形成。

IF 2 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Paul C Bressloff
{"title":"部分吸收介质中形态形成梯度的形成。","authors":"Paul C Bressloff","doi":"10.1088/1478-3975/ac95ea","DOIUrl":null,"url":null,"abstract":"<p><p>Morphogen gradients play an essential role in the spatial regulation of cell patterning during early development. The classical mechanism of morphogen gradient formation involves the diffusion of morphogens away from a localized source combined with some form of bulk absorption. Morphogen gradient formation plays a crucial role during early development, whereby a spatially varying concentration of morphogen protein drives a corresponding spatial variation in gene expression during embryogenesis. In most models, the absorption rate is taken to be a constant multiple of the local concentration. In this paper, we explore a more general class of diffusion-based model in which absorption is formulated probabilistically in terms of a stopping time condition. Absorption of each particle occurs when its time spent within the bulk domain (occupation time) exceeds a randomly distributed threshold<i>a</i>; the classical model with a constant rate of absorption is recovered by taking the threshold distributionΨ(a)=e-κ0a. We explore how the choice of Ψ(<i>a</i>) affects the steady-state concentration gradient, and the relaxation to steady-state as determined by the accumulation time. In particular, we show that the more general model can generate similar concentration profiles to the classical case, while significantly reducing the accumulation time.</p>","PeriodicalId":20207,"journal":{"name":"Physical biology","volume":"19 6","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Morphogen gradient formation in partially absorbing media.\",\"authors\":\"Paul C Bressloff\",\"doi\":\"10.1088/1478-3975/ac95ea\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Morphogen gradients play an essential role in the spatial regulation of cell patterning during early development. The classical mechanism of morphogen gradient formation involves the diffusion of morphogens away from a localized source combined with some form of bulk absorption. Morphogen gradient formation plays a crucial role during early development, whereby a spatially varying concentration of morphogen protein drives a corresponding spatial variation in gene expression during embryogenesis. In most models, the absorption rate is taken to be a constant multiple of the local concentration. In this paper, we explore a more general class of diffusion-based model in which absorption is formulated probabilistically in terms of a stopping time condition. Absorption of each particle occurs when its time spent within the bulk domain (occupation time) exceeds a randomly distributed threshold<i>a</i>; the classical model with a constant rate of absorption is recovered by taking the threshold distributionΨ(a)=e-κ0a. We explore how the choice of Ψ(<i>a</i>) affects the steady-state concentration gradient, and the relaxation to steady-state as determined by the accumulation time. In particular, we show that the more general model can generate similar concentration profiles to the classical case, while significantly reducing the accumulation time.</p>\",\"PeriodicalId\":20207,\"journal\":{\"name\":\"Physical biology\",\"volume\":\"19 6\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1088/1478-3975/ac95ea\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1088/1478-3975/ac95ea","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

形态发生梯度在细胞发育早期的空间调控中起着重要的作用。形成形态因子梯度的经典机制包括形成因子从局部源向外扩散,并结合某种形式的体吸收。形态原梯度的形成在早期发育过程中起着至关重要的作用,因此在胚胎发生过程中,形态原蛋白浓度的空间变化驱动了相应的基因表达的空间变化。在大多数模型中,吸收率取为局部浓度的常数倍。在本文中,我们探索了一类更一般的基于扩散的模型,其中吸收是根据停止时间条件概率地表述的。当每个粒子在体域内的时间(占用时间)超过随机分布的阈值时,就会发生吸收;采用阈值distributionΨ(a)=e-κ0a恢复吸收率恒定的经典模型。我们探讨了Ψ(a)的选择如何影响稳态浓度梯度,以及由积累时间决定的稳态松弛。特别是,我们表明,更一般的模型可以产生与经典情况相似的浓度曲线,同时显着减少积累时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Morphogen gradient formation in partially absorbing media.

Morphogen gradients play an essential role in the spatial regulation of cell patterning during early development. The classical mechanism of morphogen gradient formation involves the diffusion of morphogens away from a localized source combined with some form of bulk absorption. Morphogen gradient formation plays a crucial role during early development, whereby a spatially varying concentration of morphogen protein drives a corresponding spatial variation in gene expression during embryogenesis. In most models, the absorption rate is taken to be a constant multiple of the local concentration. In this paper, we explore a more general class of diffusion-based model in which absorption is formulated probabilistically in terms of a stopping time condition. Absorption of each particle occurs when its time spent within the bulk domain (occupation time) exceeds a randomly distributed thresholda; the classical model with a constant rate of absorption is recovered by taking the threshold distributionΨ(a)=e-κ0a. We explore how the choice of Ψ(a) affects the steady-state concentration gradient, and the relaxation to steady-state as determined by the accumulation time. In particular, we show that the more general model can generate similar concentration profiles to the classical case, while significantly reducing the accumulation time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical biology
Physical biology 生物-生物物理
CiteScore
4.20
自引率
0.00%
发文量
50
审稿时长
3 months
期刊介绍: Physical Biology publishes articles in the broad interdisciplinary field bridging biology with the physical sciences and engineering. This journal focuses on research in which quantitative approaches – experimental, theoretical and modeling – lead to new insights into biological systems at all scales of space and time, and all levels of organizational complexity. Physical Biology accepts contributions from a wide range of biological sub-fields, including topics such as: molecular biophysics, including single molecule studies, protein-protein and protein-DNA interactions subcellular structures, organelle dynamics, membranes, protein assemblies, chromosome structure intracellular processes, e.g. cytoskeleton dynamics, cellular transport, cell division systems biology, e.g. signaling, gene regulation and metabolic networks cells and their microenvironment, e.g. cell mechanics and motility, chemotaxis, extracellular matrix, biofilms cell-material interactions, e.g. biointerfaces, electrical stimulation and sensing, endocytosis cell-cell interactions, cell aggregates, organoids, tissues and organs developmental dynamics, including pattern formation and morphogenesis physical and evolutionary aspects of disease, e.g. cancer progression, amyloid formation neuronal systems, including information processing by networks, memory and learning population dynamics, ecology, and evolution collective action and emergence of collective phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信