{"title":"网络元分析中最优治疗选择的多准则决策方法。","authors":"Ioannis Bellos","doi":"10.1177/0272989X221126678","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Network meta-analysis exploits randomized data to compare multiple interventions and generate rankings. Selecting an optimal treatment may be complicated when multiple conflicting outcomes are evaluated in parallel.</p><p><strong>Design: </strong>The present study suggested the incorporation of multicriteria decision-making methods in network meta-analyses to select the best intervention when multiple outcomes are of interest by creating partial and absolute rankings with the TOPSIS, VIKOR, and PROMETHEE algorithms. The TOPSIS and VIKOR techniques represent distance-based methods for compromise intervention selection, whereas the PROMETHEE analysis method allows the definition of preference and indifference thresholds. In addition, the PROMETHEE technique allows a variety of modeling options by selecting alternative preference functions. Different weights may be applied to outcomes objectively with the entropy method as well as subjectively with the analytic hierarchy process, enabling the individualization of treatment choice depending on the clinical scenario.</p><p><strong>Results: </strong>Visualization of decision analysis may be performed with multicriteria score-adjusted scatterplots, while league tables may be constructed to depict the PROMETHEE I partial ordering of interventions. A simulated study was performed assuming equal weights of outcomes, and the TOPSIS, VIKOR, and PROMETHEE II methods were compared using a similarity coefficient, indicating a high degree of agreement among methods, especially with higher numbers of interventions.</p><p><strong>Conclusions: </strong>Multicriteria decision analysis provides a flexible and computationally direct way of selecting compromise interventions and visualizing treatment selection in network meta-analyses. Further research should provide empirical data about the implementation of multicriteria decision analysis in real-world network meta-analyses aiming to define the most suitable method depending on the clinical question.</p><p><strong>Highlights: </strong>Multicriteria decision-making methods can be implemented in network meta-analysis to indicate compromise interventions.The TOPSIS, VIKOR, and PROMETHEE methods can be used for optimal treatment selection when conflicting outcomes are evaluated.The weights of outcomes can be defined objectively or subjectively, reflecting the priorities of the decision maker.</p>","PeriodicalId":49839,"journal":{"name":"Medical Decision Making","volume":"43 1","pages":"78-90"},"PeriodicalIF":3.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multicriteria Decision-Making Methods for Optimal Treatment Selection in Network Meta-Analysis.\",\"authors\":\"Ioannis Bellos\",\"doi\":\"10.1177/0272989X221126678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Network meta-analysis exploits randomized data to compare multiple interventions and generate rankings. Selecting an optimal treatment may be complicated when multiple conflicting outcomes are evaluated in parallel.</p><p><strong>Design: </strong>The present study suggested the incorporation of multicriteria decision-making methods in network meta-analyses to select the best intervention when multiple outcomes are of interest by creating partial and absolute rankings with the TOPSIS, VIKOR, and PROMETHEE algorithms. The TOPSIS and VIKOR techniques represent distance-based methods for compromise intervention selection, whereas the PROMETHEE analysis method allows the definition of preference and indifference thresholds. In addition, the PROMETHEE technique allows a variety of modeling options by selecting alternative preference functions. Different weights may be applied to outcomes objectively with the entropy method as well as subjectively with the analytic hierarchy process, enabling the individualization of treatment choice depending on the clinical scenario.</p><p><strong>Results: </strong>Visualization of decision analysis may be performed with multicriteria score-adjusted scatterplots, while league tables may be constructed to depict the PROMETHEE I partial ordering of interventions. A simulated study was performed assuming equal weights of outcomes, and the TOPSIS, VIKOR, and PROMETHEE II methods were compared using a similarity coefficient, indicating a high degree of agreement among methods, especially with higher numbers of interventions.</p><p><strong>Conclusions: </strong>Multicriteria decision analysis provides a flexible and computationally direct way of selecting compromise interventions and visualizing treatment selection in network meta-analyses. Further research should provide empirical data about the implementation of multicriteria decision analysis in real-world network meta-analyses aiming to define the most suitable method depending on the clinical question.</p><p><strong>Highlights: </strong>Multicriteria decision-making methods can be implemented in network meta-analysis to indicate compromise interventions.The TOPSIS, VIKOR, and PROMETHEE methods can be used for optimal treatment selection when conflicting outcomes are evaluated.The weights of outcomes can be defined objectively or subjectively, reflecting the priorities of the decision maker.</p>\",\"PeriodicalId\":49839,\"journal\":{\"name\":\"Medical Decision Making\",\"volume\":\"43 1\",\"pages\":\"78-90\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Decision Making\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/0272989X221126678\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Decision Making","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/0272989X221126678","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Multicriteria Decision-Making Methods for Optimal Treatment Selection in Network Meta-Analysis.
Background: Network meta-analysis exploits randomized data to compare multiple interventions and generate rankings. Selecting an optimal treatment may be complicated when multiple conflicting outcomes are evaluated in parallel.
Design: The present study suggested the incorporation of multicriteria decision-making methods in network meta-analyses to select the best intervention when multiple outcomes are of interest by creating partial and absolute rankings with the TOPSIS, VIKOR, and PROMETHEE algorithms. The TOPSIS and VIKOR techniques represent distance-based methods for compromise intervention selection, whereas the PROMETHEE analysis method allows the definition of preference and indifference thresholds. In addition, the PROMETHEE technique allows a variety of modeling options by selecting alternative preference functions. Different weights may be applied to outcomes objectively with the entropy method as well as subjectively with the analytic hierarchy process, enabling the individualization of treatment choice depending on the clinical scenario.
Results: Visualization of decision analysis may be performed with multicriteria score-adjusted scatterplots, while league tables may be constructed to depict the PROMETHEE I partial ordering of interventions. A simulated study was performed assuming equal weights of outcomes, and the TOPSIS, VIKOR, and PROMETHEE II methods were compared using a similarity coefficient, indicating a high degree of agreement among methods, especially with higher numbers of interventions.
Conclusions: Multicriteria decision analysis provides a flexible and computationally direct way of selecting compromise interventions and visualizing treatment selection in network meta-analyses. Further research should provide empirical data about the implementation of multicriteria decision analysis in real-world network meta-analyses aiming to define the most suitable method depending on the clinical question.
Highlights: Multicriteria decision-making methods can be implemented in network meta-analysis to indicate compromise interventions.The TOPSIS, VIKOR, and PROMETHEE methods can be used for optimal treatment selection when conflicting outcomes are evaluated.The weights of outcomes can be defined objectively or subjectively, reflecting the priorities of the decision maker.
期刊介绍:
Medical Decision Making offers rigorous and systematic approaches to decision making that are designed to improve the health and clinical care of individuals and to assist with health care policy development. Using the fundamentals of decision analysis and theory, economic evaluation, and evidence based quality assessment, Medical Decision Making presents both theoretical and practical statistical and modeling techniques and methods from a variety of disciplines.