基于缺氧特征的胃癌预后风险评估模型的构建与评价

IF 1.5 4区 医学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Xiaoling Zhu , Jianfang Wang , Xueying Jin , Yiyi Chen , Liang Hu , Jianguo Zhao
{"title":"基于缺氧特征的胃癌预后风险评估模型的构建与评价","authors":"Xiaoling Zhu ,&nbsp;Jianfang Wang ,&nbsp;Xueying Jin ,&nbsp;Yiyi Chen ,&nbsp;Liang Hu ,&nbsp;Jianguo Zhao","doi":"10.1016/j.mrfmmm.2022.111795","DOIUrl":null,"url":null,"abstract":"<div><p><span>In this study, mRNA expression of gastric cancer tissue and clinical data of patients in TCGA-STAD dataset were used, together with the hypoxia-related gene sets in the MsigDB database, to screen hypoxia-related differentially expressed genes (DEGs) in GC. Thereafter, univariate and multivariate Cox regression analyses were carried out on hypoxia-related DEGs. The optimal feature genes related to prognosis were obtained to construct a prognostic risk assessment model. According to the model, the riskScore of GC patients was measured, and GC samples were assigned into high- and low-risk groups in accordance with the median riskScore. Based on the Kaplan-Meier curve and Receiver operating characteristic curve, validity of the prognostic risk assessment model was measured. Gene set enrichment analysis was performed on the two risk groups through Gene set enrichment analysis software. The results revealed that in the high-risk group, 9 </span>signaling pathways<span><span> were remarkably activated in several terms, like focal adhesion, extracellular matrix receptor interaction, </span>Cell adhesion molecules cams, Cytokine-cytokine receptor interaction, TGF-beta signaling pathway, NOD-like receptor signaling pathway, JAK-STAT signaling pathway, Toll-like receptor signaling pathway and MAPK signaling pathway. In combination with riskScore and clinical factors, univariate and multivariate Cox regression analyses verified the independence of the model. Meanwhile, a nomogram was constructed to predict the 1-, 3- and 5-year survival of GC patients. The calibration curve indicated that the survival status predicted by the nomogram fitted better with actual survival status. On the whole, the prognostic risk model of GC on the basis of hypoxia-related genes demonstrated good predictive ability. It can provide more powerful technical support for clinicians to make prognostic determination and therapeutic plans.</span></p></div>","PeriodicalId":49790,"journal":{"name":"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis","volume":"825 ","pages":"Article 111795"},"PeriodicalIF":1.5000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction and evaluation of a prognostic risk assessment model of gastric cancer by using hypoxia features\",\"authors\":\"Xiaoling Zhu ,&nbsp;Jianfang Wang ,&nbsp;Xueying Jin ,&nbsp;Yiyi Chen ,&nbsp;Liang Hu ,&nbsp;Jianguo Zhao\",\"doi\":\"10.1016/j.mrfmmm.2022.111795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>In this study, mRNA expression of gastric cancer tissue and clinical data of patients in TCGA-STAD dataset were used, together with the hypoxia-related gene sets in the MsigDB database, to screen hypoxia-related differentially expressed genes (DEGs) in GC. Thereafter, univariate and multivariate Cox regression analyses were carried out on hypoxia-related DEGs. The optimal feature genes related to prognosis were obtained to construct a prognostic risk assessment model. According to the model, the riskScore of GC patients was measured, and GC samples were assigned into high- and low-risk groups in accordance with the median riskScore. Based on the Kaplan-Meier curve and Receiver operating characteristic curve, validity of the prognostic risk assessment model was measured. Gene set enrichment analysis was performed on the two risk groups through Gene set enrichment analysis software. The results revealed that in the high-risk group, 9 </span>signaling pathways<span><span> were remarkably activated in several terms, like focal adhesion, extracellular matrix receptor interaction, </span>Cell adhesion molecules cams, Cytokine-cytokine receptor interaction, TGF-beta signaling pathway, NOD-like receptor signaling pathway, JAK-STAT signaling pathway, Toll-like receptor signaling pathway and MAPK signaling pathway. In combination with riskScore and clinical factors, univariate and multivariate Cox regression analyses verified the independence of the model. Meanwhile, a nomogram was constructed to predict the 1-, 3- and 5-year survival of GC patients. The calibration curve indicated that the survival status predicted by the nomogram fitted better with actual survival status. On the whole, the prognostic risk model of GC on the basis of hypoxia-related genes demonstrated good predictive ability. It can provide more powerful technical support for clinicians to make prognostic determination and therapeutic plans.</span></p></div>\",\"PeriodicalId\":49790,\"journal\":{\"name\":\"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis\",\"volume\":\"825 \",\"pages\":\"Article 111795\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0027510722000227\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0027510722000227","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用TCGA-STAD数据集中胃癌组织mRNA表达和患者临床数据,结合MsigDB数据库中的缺氧相关基因集,筛选胃癌中缺氧相关差异表达基因(DEGs)。随后,对低氧相关deg进行单因素和多因素Cox回归分析。获得与预后相关的最佳特征基因,构建预后风险评估模型。根据该模型测量GC患者的riskScore,并根据中位riskScore将GC样本分为高危组和低危组。根据Kaplan-Meier曲线和Receiver工作特征曲线,衡量预后风险评估模型的有效性。通过基因集富集分析软件对两个危险组进行基因集富集分析。结果显示,在高危组中,病灶黏附、细胞外基质受体相互作用、细胞黏附分子运动、细胞因子-细胞因子受体相互作用、tgf - β信号通路、nod样受体信号通路、JAK-STAT信号通路、toll样受体信号通路和MAPK信号通路等9条信号通路被显著激活。结合riskScore和临床因素,单因素和多因素Cox回归分析验证了模型的独立性。同时,构建了预测胃癌患者1、3、5年生存率的nomogram。标定曲线表明,nomogram预测的生存状态与实际生存状态拟合较好。总体而言,基于缺氧相关基因的胃癌预后风险模型具有较好的预测能力。为临床医生制定预后判断和治疗方案提供更有力的技术支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Construction and evaluation of a prognostic risk assessment model of gastric cancer by using hypoxia features

In this study, mRNA expression of gastric cancer tissue and clinical data of patients in TCGA-STAD dataset were used, together with the hypoxia-related gene sets in the MsigDB database, to screen hypoxia-related differentially expressed genes (DEGs) in GC. Thereafter, univariate and multivariate Cox regression analyses were carried out on hypoxia-related DEGs. The optimal feature genes related to prognosis were obtained to construct a prognostic risk assessment model. According to the model, the riskScore of GC patients was measured, and GC samples were assigned into high- and low-risk groups in accordance with the median riskScore. Based on the Kaplan-Meier curve and Receiver operating characteristic curve, validity of the prognostic risk assessment model was measured. Gene set enrichment analysis was performed on the two risk groups through Gene set enrichment analysis software. The results revealed that in the high-risk group, 9 signaling pathways were remarkably activated in several terms, like focal adhesion, extracellular matrix receptor interaction, Cell adhesion molecules cams, Cytokine-cytokine receptor interaction, TGF-beta signaling pathway, NOD-like receptor signaling pathway, JAK-STAT signaling pathway, Toll-like receptor signaling pathway and MAPK signaling pathway. In combination with riskScore and clinical factors, univariate and multivariate Cox regression analyses verified the independence of the model. Meanwhile, a nomogram was constructed to predict the 1-, 3- and 5-year survival of GC patients. The calibration curve indicated that the survival status predicted by the nomogram fitted better with actual survival status. On the whole, the prognostic risk model of GC on the basis of hypoxia-related genes demonstrated good predictive ability. It can provide more powerful technical support for clinicians to make prognostic determination and therapeutic plans.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
0.00%
发文量
24
审稿时长
51 days
期刊介绍: Mutation Research (MR) provides a platform for publishing all aspects of DNA mutations and epimutations, from basic evolutionary aspects to translational applications in genetic and epigenetic diagnostics and therapy. Mutations are defined as all possible alterations in DNA sequence and sequence organization, from point mutations to genome structural variation, chromosomal aberrations and aneuploidy. Epimutations are defined as alterations in the epigenome, i.e., changes in DNA methylation, histone modification and small regulatory RNAs. MR publishes articles in the following areas: Of special interest are basic mechanisms through which DNA damage and mutations impact development and differentiation, stem cell biology and cell fate in general, including various forms of cell death and cellular senescence. The study of genome instability in human molecular epidemiology and in relation to complex phenotypes, such as human disease, is considered a growing area of importance. Mechanisms of (epi)mutation induction, for example, during DNA repair, replication or recombination; novel methods of (epi)mutation detection, with a focus on ultra-high-throughput sequencing. Landscape of somatic mutations and epimutations in cancer and aging. Role of de novo mutations in human disease and aging; mutations in population genomics. Interactions between mutations and epimutations. The role of epimutations in chromatin structure and function. Mitochondrial DNA mutations and their consequences in terms of human disease and aging. Novel ways to generate mutations and epimutations in cell lines and animal models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信