David E Bautista, Joseph F Carr, Angela M Mitchell
{"title":"抑制突变体:历史与当今应用","authors":"David E Bautista, Joseph F Carr, Angela M Mitchell","doi":"10.1128/ecosalplus.ESP-0037-2020","DOIUrl":null,"url":null,"abstract":"<p><p>For decades, biologist have exploited the near boundless advantages that molecular and genetic tools and analysis provide for our ability to understand biological systems. One of these genetic tools, suppressor analysis, has proven invaluable in furthering our understanding of biological processes and pathways and in discovering unknown interactions between genes and gene products. The power of suppressor analysis lies in its ability to discover genetic interactions in an unbiased manner, often leading to surprising discoveries. With advancements in technology, high-throughput approaches have aided in large-scale identification of suppressors and have helped provide insight into the core functional mechanisms through which suppressors act. In this review, we examine some of the fundamental discoveries that have been made possible through analysis of suppressor mutations. In addition, we cover the different types of suppressor mutants that can be isolated and the biological insights afforded by each type. Moreover, we provide considerations for the design of experiments to isolate suppressor mutants and for strategies to identify intergenic suppressor mutations. Finally, we provide guidance and example protocols for the isolation and mapping of suppressor mutants.</p>","PeriodicalId":11500,"journal":{"name":"EcoSal Plus","volume":"9 2","pages":"eESP00372020"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9008745/pdf/nihms-1794026.pdf","citationCount":"0","resultStr":"{\"title\":\"Suppressor Mutants: History and Today's Applications.\",\"authors\":\"David E Bautista, Joseph F Carr, Angela M Mitchell\",\"doi\":\"10.1128/ecosalplus.ESP-0037-2020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>For decades, biologist have exploited the near boundless advantages that molecular and genetic tools and analysis provide for our ability to understand biological systems. One of these genetic tools, suppressor analysis, has proven invaluable in furthering our understanding of biological processes and pathways and in discovering unknown interactions between genes and gene products. The power of suppressor analysis lies in its ability to discover genetic interactions in an unbiased manner, often leading to surprising discoveries. With advancements in technology, high-throughput approaches have aided in large-scale identification of suppressors and have helped provide insight into the core functional mechanisms through which suppressors act. In this review, we examine some of the fundamental discoveries that have been made possible through analysis of suppressor mutations. In addition, we cover the different types of suppressor mutants that can be isolated and the biological insights afforded by each type. Moreover, we provide considerations for the design of experiments to isolate suppressor mutants and for strategies to identify intergenic suppressor mutations. Finally, we provide guidance and example protocols for the isolation and mapping of suppressor mutants.</p>\",\"PeriodicalId\":11500,\"journal\":{\"name\":\"EcoSal Plus\",\"volume\":\"9 2\",\"pages\":\"eESP00372020\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9008745/pdf/nihms-1794026.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EcoSal Plus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1128/ecosalplus.ESP-0037-2020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoSal Plus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1128/ecosalplus.ESP-0037-2020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Suppressor Mutants: History and Today's Applications.
For decades, biologist have exploited the near boundless advantages that molecular and genetic tools and analysis provide for our ability to understand biological systems. One of these genetic tools, suppressor analysis, has proven invaluable in furthering our understanding of biological processes and pathways and in discovering unknown interactions between genes and gene products. The power of suppressor analysis lies in its ability to discover genetic interactions in an unbiased manner, often leading to surprising discoveries. With advancements in technology, high-throughput approaches have aided in large-scale identification of suppressors and have helped provide insight into the core functional mechanisms through which suppressors act. In this review, we examine some of the fundamental discoveries that have been made possible through analysis of suppressor mutations. In addition, we cover the different types of suppressor mutants that can be isolated and the biological insights afforded by each type. Moreover, we provide considerations for the design of experiments to isolate suppressor mutants and for strategies to identify intergenic suppressor mutations. Finally, we provide guidance and example protocols for the isolation and mapping of suppressor mutants.
EcoSal PlusImmunology and Microbiology-Microbiology
CiteScore
12.20
自引率
0.00%
发文量
4
期刊介绍:
EcoSal Plus is the authoritative online review journal that publishes an ever-growing body of expert reviews covering virtually all aspects of E. coli, Salmonella, and other members of the family Enterobacteriaceae and their use as model microbes for biological explorations. This journal is intended primarily for the research community as a comprehensive and continuously updated archive of the entire corpus of knowledge about the enteric bacterial cell. Thoughtful reviews focus on physiology, metabolism, genetics, pathogenesis, ecology, genomics, systems biology, and history E. coli and its relatives. These provide the integrated background needed for most microbiology investigations and are essential reading for research scientists. Articles contain links to E. coli K12 genes on the EcoCyc database site and are available as downloadable PDF files. Images and tables are downloadable to PowerPoint files.