Volkan Yazar, Wolfgang P Ruf, Antje Knehr, Kornelia Günther, Ole Ammerpohl, Karin M Danzer, Albert C Ludolph
{"title":"血细胞中不一致的同卵双胞胎的DNA甲基化分析。","authors":"Volkan Yazar, Wolfgang P Ruf, Antje Knehr, Kornelia Günther, Ole Ammerpohl, Karin M Danzer, Albert C Ludolph","doi":"10.1177/25168657231172159","DOIUrl":null,"url":null,"abstract":"<p><p>ALS is a fatal motor neuron disease that displays a broad variety of phenotypes ranging from early fatal courses to slowly progressing and rather benign courses. Such divergence can also be seen in genetic ALS cases with varying phenotypes bearing specific mutations, suggesting epigenetic mechanisms like DNA methylation act as disease modifiers. However, the epigenotype dictated by, in addition to other mechanisms, DNA methylation is also strongly influenced by the individual's genotype. Hence, we performed a DNA methylation study using EPIC arrays on 7 monozygotic (MZ) twin pairs discordant for ALS in whole blood, which serves as an ideal model for eliminating the effects of the genetic-epigenetic interplay to a large extent. We found one CpG site showing intra-pair hypermethylation in the affected co-twins, which maps to the Glutamate Ionotropic Receptor Kainate Type Subunit 1 gene (<i>GRIK1)</i>. Additionally, we found 4 DMPs which were subsequently confirmed using 2 different statistical approaches. Differentially methylated regions or blocks could not be detected within the scope of this work. In conclusion, we revealed that despite a low sample size, monozygotic twin studies discordant for the disease can bring new insights into epigenetic processes in ALS, pointing to new target loci for further investigations.</p>","PeriodicalId":41996,"journal":{"name":"Epigenetics Insights","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/df/11/10.1177_25168657231172159.PMC10161312.pdf","citationCount":"0","resultStr":"{\"title\":\"DNA Methylation Analysis in Monozygotic Twins Discordant for ALS in Blood Cells.\",\"authors\":\"Volkan Yazar, Wolfgang P Ruf, Antje Knehr, Kornelia Günther, Ole Ammerpohl, Karin M Danzer, Albert C Ludolph\",\"doi\":\"10.1177/25168657231172159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>ALS is a fatal motor neuron disease that displays a broad variety of phenotypes ranging from early fatal courses to slowly progressing and rather benign courses. Such divergence can also be seen in genetic ALS cases with varying phenotypes bearing specific mutations, suggesting epigenetic mechanisms like DNA methylation act as disease modifiers. However, the epigenotype dictated by, in addition to other mechanisms, DNA methylation is also strongly influenced by the individual's genotype. Hence, we performed a DNA methylation study using EPIC arrays on 7 monozygotic (MZ) twin pairs discordant for ALS in whole blood, which serves as an ideal model for eliminating the effects of the genetic-epigenetic interplay to a large extent. We found one CpG site showing intra-pair hypermethylation in the affected co-twins, which maps to the Glutamate Ionotropic Receptor Kainate Type Subunit 1 gene (<i>GRIK1)</i>. Additionally, we found 4 DMPs which were subsequently confirmed using 2 different statistical approaches. Differentially methylated regions or blocks could not be detected within the scope of this work. In conclusion, we revealed that despite a low sample size, monozygotic twin studies discordant for the disease can bring new insights into epigenetic processes in ALS, pointing to new target loci for further investigations.</p>\",\"PeriodicalId\":41996,\"journal\":{\"name\":\"Epigenetics Insights\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/df/11/10.1177_25168657231172159.PMC10161312.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epigenetics Insights\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/25168657231172159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenetics Insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/25168657231172159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
DNA Methylation Analysis in Monozygotic Twins Discordant for ALS in Blood Cells.
ALS is a fatal motor neuron disease that displays a broad variety of phenotypes ranging from early fatal courses to slowly progressing and rather benign courses. Such divergence can also be seen in genetic ALS cases with varying phenotypes bearing specific mutations, suggesting epigenetic mechanisms like DNA methylation act as disease modifiers. However, the epigenotype dictated by, in addition to other mechanisms, DNA methylation is also strongly influenced by the individual's genotype. Hence, we performed a DNA methylation study using EPIC arrays on 7 monozygotic (MZ) twin pairs discordant for ALS in whole blood, which serves as an ideal model for eliminating the effects of the genetic-epigenetic interplay to a large extent. We found one CpG site showing intra-pair hypermethylation in the affected co-twins, which maps to the Glutamate Ionotropic Receptor Kainate Type Subunit 1 gene (GRIK1). Additionally, we found 4 DMPs which were subsequently confirmed using 2 different statistical approaches. Differentially methylated regions or blocks could not be detected within the scope of this work. In conclusion, we revealed that despite a low sample size, monozygotic twin studies discordant for the disease can bring new insights into epigenetic processes in ALS, pointing to new target loci for further investigations.