{"title":"马尔可夫队列状态转移模型:一种多项分布表示。","authors":"Rowan Iskandar, Cassandra Berns","doi":"10.1177/0272989X221112420","DOIUrl":null,"url":null,"abstract":"<p><strong>Highlights: </strong>A Markov model simulates the average experience of a cohort of patients.Monte Carlo simulation, the standard approach for estimating the variance, is computationally expensive.A multinomial distribution provides an exact representation of a Markov model.Using the known formulas of a multinomial distribution, the mean and variance of a Markov model can be readily calculated.</p>","PeriodicalId":49839,"journal":{"name":"Medical Decision Making","volume":"43 1","pages":"139-142"},"PeriodicalIF":3.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Markov Cohort State-Transition Model: A Multinomial Distribution Representation.\",\"authors\":\"Rowan Iskandar, Cassandra Berns\",\"doi\":\"10.1177/0272989X221112420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Highlights: </strong>A Markov model simulates the average experience of a cohort of patients.Monte Carlo simulation, the standard approach for estimating the variance, is computationally expensive.A multinomial distribution provides an exact representation of a Markov model.Using the known formulas of a multinomial distribution, the mean and variance of a Markov model can be readily calculated.</p>\",\"PeriodicalId\":49839,\"journal\":{\"name\":\"Medical Decision Making\",\"volume\":\"43 1\",\"pages\":\"139-142\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Decision Making\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/0272989X221112420\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Decision Making","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/0272989X221112420","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Markov Cohort State-Transition Model: A Multinomial Distribution Representation.
Highlights: A Markov model simulates the average experience of a cohort of patients.Monte Carlo simulation, the standard approach for estimating the variance, is computationally expensive.A multinomial distribution provides an exact representation of a Markov model.Using the known formulas of a multinomial distribution, the mean and variance of a Markov model can be readily calculated.
期刊介绍:
Medical Decision Making offers rigorous and systematic approaches to decision making that are designed to improve the health and clinical care of individuals and to assist with health care policy development. Using the fundamentals of decision analysis and theory, economic evaluation, and evidence based quality assessment, Medical Decision Making presents both theoretical and practical statistical and modeling techniques and methods from a variety of disciplines.