{"title":"糖尿病动脉粥样硬化数学模型的稳态解及其稳定性。","authors":"Xuming Xie","doi":"10.1080/17513758.2023.2257734","DOIUrl":null,"url":null,"abstract":"<p><p>Atherosclerosis is a leading cause of death worldwide. Making matters worse, nearly 463 million people have diabetes, which increases atherosclerosis-related inflammation. Diabetic patients are twice as likely to have a heart attack or stroke. In this paper, we consider a simplified mathematical model for diabetic atherosclerosis involving LDL, HDL, glucose, insulin, free radicals (ROS), <i>β</i> cells, macrophages and foam cells, which satisfy a system of partial differential equations with a free boundary, the interface between the blood flow and the plaque. We establish the existence of small radially symmetric stationary solutions to the model and study their stability. Our analysis shows that the plague will persist due to hyperglycemia even when LDL and HDL are in normal range, hence confirms that diabetes increase the risk of atherosclerosis.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"17 1","pages":"2257734"},"PeriodicalIF":1.8000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10576982/pdf/","citationCount":"0","resultStr":"{\"title\":\"Steady solution and its stability of a mathematical model of diabetic atherosclerosis.\",\"authors\":\"Xuming Xie\",\"doi\":\"10.1080/17513758.2023.2257734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Atherosclerosis is a leading cause of death worldwide. Making matters worse, nearly 463 million people have diabetes, which increases atherosclerosis-related inflammation. Diabetic patients are twice as likely to have a heart attack or stroke. In this paper, we consider a simplified mathematical model for diabetic atherosclerosis involving LDL, HDL, glucose, insulin, free radicals (ROS), <i>β</i> cells, macrophages and foam cells, which satisfy a system of partial differential equations with a free boundary, the interface between the blood flow and the plaque. We establish the existence of small radially symmetric stationary solutions to the model and study their stability. Our analysis shows that the plague will persist due to hyperglycemia even when LDL and HDL are in normal range, hence confirms that diabetes increase the risk of atherosclerosis.</p>\",\"PeriodicalId\":48809,\"journal\":{\"name\":\"Journal of Biological Dynamics\",\"volume\":\"17 1\",\"pages\":\"2257734\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10576982/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Dynamics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/17513758.2023.2257734\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17513758.2023.2257734","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
Steady solution and its stability of a mathematical model of diabetic atherosclerosis.
Atherosclerosis is a leading cause of death worldwide. Making matters worse, nearly 463 million people have diabetes, which increases atherosclerosis-related inflammation. Diabetic patients are twice as likely to have a heart attack or stroke. In this paper, we consider a simplified mathematical model for diabetic atherosclerosis involving LDL, HDL, glucose, insulin, free radicals (ROS), β cells, macrophages and foam cells, which satisfy a system of partial differential equations with a free boundary, the interface between the blood flow and the plaque. We establish the existence of small radially symmetric stationary solutions to the model and study their stability. Our analysis shows that the plague will persist due to hyperglycemia even when LDL and HDL are in normal range, hence confirms that diabetes increase the risk of atherosclerosis.
期刊介绍:
Journal of Biological Dynamics, an open access journal, publishes state of the art papers dealing with the analysis of dynamic models that arise from biological processes. The Journal focuses on dynamic phenomena at scales ranging from the level of individual organisms to that of populations, communities, and ecosystems in the fields of ecology and evolutionary biology, population dynamics, epidemiology, immunology, neuroscience, environmental science, and animal behavior. Papers in other areas are acceptable at the editors’ discretion. In addition to papers that analyze original mathematical models and develop new theories and analytic methods, the Journal welcomes papers that connect mathematical modeling and analysis to experimental and observational data. The Journal also publishes short notes, expository and review articles, book reviews and a section on open problems.