基于单细胞数据的细胞连接引导轨迹推断。

IF 4.4 3区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Johannes Smolander, Sini Junttila, Laura L Elo
{"title":"基于单细胞数据的细胞连接引导轨迹推断。","authors":"Johannes Smolander,&nbsp;Sini Junttila,&nbsp;Laura L Elo","doi":"10.1093/bioinformatics/btad515","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Single-cell RNA-sequencing enables cell-level investigation of cell differentiation, which can be modelled using trajectory inference methods. While tremendous effort has been put into designing these methods, inferring accurate trajectories automatically remains difficult. Therefore, the standard approach involves testing different trajectory inference methods and picking the trajectory giving the most biologically sensible model. As the default parameters are often suboptimal, their tuning requires methodological expertise.</p><p><strong>Results: </strong>We introduce Totem, an open-source, easy-to-use R package designed to facilitate inference of tree-shaped trajectories from single-cell data. Totem generates a large number of clustering results, estimates their topologies as minimum spanning trees, and uses them to measure the connectivity of the cells. Besides automatic selection of an appropriate trajectory, cell connectivity enables to visually pinpoint branching points and milestones relevant to the trajectory. Furthermore, testing different trajectories with Totem is fast, easy, and does not require in-depth methodological knowledge.</p><p><strong>Availability and implementation: </strong>Totem is available as an R package at https://github.com/elolab/Totem.</p>","PeriodicalId":8903,"journal":{"name":"Bioinformatics","volume":"39 9","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10474950/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cell-connectivity-guided trajectory inference from single-cell data.\",\"authors\":\"Johannes Smolander,&nbsp;Sini Junttila,&nbsp;Laura L Elo\",\"doi\":\"10.1093/bioinformatics/btad515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>Single-cell RNA-sequencing enables cell-level investigation of cell differentiation, which can be modelled using trajectory inference methods. While tremendous effort has been put into designing these methods, inferring accurate trajectories automatically remains difficult. Therefore, the standard approach involves testing different trajectory inference methods and picking the trajectory giving the most biologically sensible model. As the default parameters are often suboptimal, their tuning requires methodological expertise.</p><p><strong>Results: </strong>We introduce Totem, an open-source, easy-to-use R package designed to facilitate inference of tree-shaped trajectories from single-cell data. Totem generates a large number of clustering results, estimates their topologies as minimum spanning trees, and uses them to measure the connectivity of the cells. Besides automatic selection of an appropriate trajectory, cell connectivity enables to visually pinpoint branching points and milestones relevant to the trajectory. Furthermore, testing different trajectories with Totem is fast, easy, and does not require in-depth methodological knowledge.</p><p><strong>Availability and implementation: </strong>Totem is available as an R package at https://github.com/elolab/Totem.</p>\",\"PeriodicalId\":8903,\"journal\":{\"name\":\"Bioinformatics\",\"volume\":\"39 9\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10474950/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bioinformatics/btad515\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btad515","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

动机:单细胞rna测序能够在细胞水平上研究细胞分化,这可以使用轨迹推断方法进行建模。虽然在设计这些方法方面已经付出了巨大的努力,但自动推断准确的轨迹仍然很困难。因此,标准方法包括测试不同的轨迹推理方法,并选择给出最具生物学意义的模型的轨迹。由于默认参数通常不是最优的,因此它们的调优需要方法方面的专业知识。结果:我们介绍了Totem,这是一个开源的,易于使用的R包,旨在促进从单细胞数据推断树状轨迹。Totem生成大量的聚类结果,将它们的拓扑估计为最小生成树,并使用它们来度量单元的连通性。除了自动选择适当的轨迹外,细胞连接还可以直观地确定与轨迹相关的分支点和里程碑。此外,用Totem测试不同的轨迹是快速、容易的,并且不需要深入的方法论知识。可用性和实现:Totem作为R包可在https://github.com/elolab/Totem获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cell-connectivity-guided trajectory inference from single-cell data.

Cell-connectivity-guided trajectory inference from single-cell data.

Cell-connectivity-guided trajectory inference from single-cell data.

Cell-connectivity-guided trajectory inference from single-cell data.

Motivation: Single-cell RNA-sequencing enables cell-level investigation of cell differentiation, which can be modelled using trajectory inference methods. While tremendous effort has been put into designing these methods, inferring accurate trajectories automatically remains difficult. Therefore, the standard approach involves testing different trajectory inference methods and picking the trajectory giving the most biologically sensible model. As the default parameters are often suboptimal, their tuning requires methodological expertise.

Results: We introduce Totem, an open-source, easy-to-use R package designed to facilitate inference of tree-shaped trajectories from single-cell data. Totem generates a large number of clustering results, estimates their topologies as minimum spanning trees, and uses them to measure the connectivity of the cells. Besides automatic selection of an appropriate trajectory, cell connectivity enables to visually pinpoint branching points and milestones relevant to the trajectory. Furthermore, testing different trajectories with Totem is fast, easy, and does not require in-depth methodological knowledge.

Availability and implementation: Totem is available as an R package at https://github.com/elolab/Totem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioinformatics
Bioinformatics 生物-生化研究方法
CiteScore
11.20
自引率
5.20%
发文量
753
审稿时长
2.1 months
期刊介绍: The leading journal in its field, Bioinformatics publishes the highest quality scientific papers and review articles of interest to academic and industrial researchers. Its main focus is on new developments in genome bioinformatics and computational biology. Two distinct sections within the journal - Discovery Notes and Application Notes- focus on shorter papers; the former reporting biologically interesting discoveries using computational methods, the latter exploring the applications used for experiments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信