2021 年:COVID-19、信息提取和 BERTization 是医学自然语言处理领域的热门话题。

Yearbook of medical informatics Pub Date : 2022-08-01 Epub Date: 2022-12-04 DOI:10.1055/s-0042-1742547
Natalia Grabar, Cyril Grouin
{"title":"2021 年:COVID-19、信息提取和 BERTization 是医学自然语言处理领域的热门话题。","authors":"Natalia Grabar, Cyril Grouin","doi":"10.1055/s-0042-1742547","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Analyze the content of publications within the medical natural language processing (NLP) domain in 2021.</p><p><strong>Methods: </strong>Automatic and manual preselection of publications to be reviewed, and selection of the best NLP papers of the year. Analysis of the important issues.</p><p><strong>Results: </strong>Four best papers have been selected in 2021. We also propose an analysis of the content of the NLP publications in 2021, all topics included.</p><p><strong>Conclusions: </strong>The main issues addressed in 2021 are related to the investigation of COVID-related questions and to the further adaptation and use of transformer models. Besides, the trends from the past years continue, such as information extraction and use of information from social networks.</p>","PeriodicalId":40027,"journal":{"name":"Yearbook of medical informatics","volume":"31 1","pages":"254-260"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c6/36/10-1055-s-0042-1742547.PMC9719758.pdf","citationCount":"0","resultStr":"{\"title\":\"Year 2021: COVID-19, Information Extraction and BERTization among the Hottest Topics in Medical Natural Language Processing.\",\"authors\":\"Natalia Grabar, Cyril Grouin\",\"doi\":\"10.1055/s-0042-1742547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Analyze the content of publications within the medical natural language processing (NLP) domain in 2021.</p><p><strong>Methods: </strong>Automatic and manual preselection of publications to be reviewed, and selection of the best NLP papers of the year. Analysis of the important issues.</p><p><strong>Results: </strong>Four best papers have been selected in 2021. We also propose an analysis of the content of the NLP publications in 2021, all topics included.</p><p><strong>Conclusions: </strong>The main issues addressed in 2021 are related to the investigation of COVID-related questions and to the further adaptation and use of transformer models. Besides, the trends from the past years continue, such as information extraction and use of information from social networks.</p>\",\"PeriodicalId\":40027,\"journal\":{\"name\":\"Yearbook of medical informatics\",\"volume\":\"31 1\",\"pages\":\"254-260\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c6/36/10-1055-s-0042-1742547.PMC9719758.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Yearbook of medical informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1055/s-0042-1742547\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/12/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Yearbook of medical informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/s-0042-1742547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目标:分析 2021 年医学自然语言处理(NLP)领域的出版物内容:分析 2021 年医学自然语言处理(NLP)领域的出版物内容:自动和手动预选待审查的出版物,并选出当年最佳的 NLP 论文。分析重要问题:结果:2021 年共选出四篇最佳论文。我们还对2021年NLP出版物的内容(包括所有主题)进行了分析:2021年涉及的主要问题与COVID相关问题的调查以及变压器模型的进一步调整和使用有关。此外,过去几年的趋势仍在继续,如从社交网络中提取和使用信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Year 2021: COVID-19, Information Extraction and BERTization among the Hottest Topics in Medical Natural Language Processing.

Year 2021: COVID-19, Information Extraction and BERTization among the Hottest Topics in Medical Natural Language Processing.

Year 2021: COVID-19, Information Extraction and BERTization among the Hottest Topics in Medical Natural Language Processing.

Objectives: Analyze the content of publications within the medical natural language processing (NLP) domain in 2021.

Methods: Automatic and manual preselection of publications to be reviewed, and selection of the best NLP papers of the year. Analysis of the important issues.

Results: Four best papers have been selected in 2021. We also propose an analysis of the content of the NLP publications in 2021, all topics included.

Conclusions: The main issues addressed in 2021 are related to the investigation of COVID-related questions and to the further adaptation and use of transformer models. Besides, the trends from the past years continue, such as information extraction and use of information from social networks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Yearbook of medical informatics
Yearbook of medical informatics Medicine-Medicine (all)
CiteScore
4.10
自引率
0.00%
发文量
20
期刊介绍: Published by the International Medical Informatics Association, this annual publication includes the best papers in medical informatics from around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信