自适应指数型集火网络同步中的爆发层次。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Congping Lin, Xiaoyue Wu, Yiwei Zhang
{"title":"自适应指数型集火网络同步中的爆发层次。","authors":"Congping Lin,&nbsp;Xiaoyue Wu,&nbsp;Yiwei Zhang","doi":"10.1007/s00422-022-00942-9","DOIUrl":null,"url":null,"abstract":"<p><p>Neuronal network synchronization has received wide interest. In the present manuscript, we study the influence of initial membrane potentials together with network topology on bursting synchronization, in particular the sequential order of stabilized bursting among neurons. We find a hierarchical phenomenon on their bursting order. With a focus on situations where network coupling advances spiking times of neurons, we grade neurons into different layers. Together with the neuronal network structure, we construct directed graphs to indicate bursting propagation between different layers. More explicitly, neurons in upper layers burst earlier than those in lower layers. More interestingly, we find that among the same layer, bursting order of neurons is mainly associated with the number of neurons they connected to the upper layer; more stimuli lead to earlier bursting. Receiving effectively the same stimuli from the upper layer, we observe neurons with fewer connections would burst earlier.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bursting hierarchy in an adaptive exponential integrate-and-fire network synchronization.\",\"authors\":\"Congping Lin,&nbsp;Xiaoyue Wu,&nbsp;Yiwei Zhang\",\"doi\":\"10.1007/s00422-022-00942-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neuronal network synchronization has received wide interest. In the present manuscript, we study the influence of initial membrane potentials together with network topology on bursting synchronization, in particular the sequential order of stabilized bursting among neurons. We find a hierarchical phenomenon on their bursting order. With a focus on situations where network coupling advances spiking times of neurons, we grade neurons into different layers. Together with the neuronal network structure, we construct directed graphs to indicate bursting propagation between different layers. More explicitly, neurons in upper layers burst earlier than those in lower layers. More interestingly, we find that among the same layer, bursting order of neurons is mainly associated with the number of neurons they connected to the upper layer; more stimuli lead to earlier bursting. Receiving effectively the same stimuli from the upper layer, we observe neurons with fewer connections would burst earlier.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00422-022-00942-9\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00422-022-00942-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

神经网络同步已受到广泛关注。在本文中,我们研究了初始膜电位和网络拓扑对爆发同步的影响,特别是神经元之间稳定爆发的顺序。我们在它们的爆发顺序上发现了一种等级现象。关注网络耦合提前神经元峰值时间的情况,我们将神经元划分为不同的层。结合神经网络结构,构造有向图来表示爆炸在不同层之间的传播。更明显的是,上层神经元比下层神经元更早破裂。更有趣的是,我们发现在同一层中,神经元的破裂顺序主要与它们连接到上层的神经元数量有关;更多的刺激导致更早的破裂。我们观察到,从上层有效接收相同的刺激时,连接较少的神经元会更早爆发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bursting hierarchy in an adaptive exponential integrate-and-fire network synchronization.

Bursting hierarchy in an adaptive exponential integrate-and-fire network synchronization.

Neuronal network synchronization has received wide interest. In the present manuscript, we study the influence of initial membrane potentials together with network topology on bursting synchronization, in particular the sequential order of stabilized bursting among neurons. We find a hierarchical phenomenon on their bursting order. With a focus on situations where network coupling advances spiking times of neurons, we grade neurons into different layers. Together with the neuronal network structure, we construct directed graphs to indicate bursting propagation between different layers. More explicitly, neurons in upper layers burst earlier than those in lower layers. More interestingly, we find that among the same layer, bursting order of neurons is mainly associated with the number of neurons they connected to the upper layer; more stimuli lead to earlier bursting. Receiving effectively the same stimuli from the upper layer, we observe neurons with fewer connections would burst earlier.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信