Pablo Scleidorovich, Alfredo Weitzenfeld, Jean-Marc Fellous, Peter Ford Dominey
{"title":"前额皮质储层模型中导航过程中位置细胞激活的速度依赖时空结构整合。","authors":"Pablo Scleidorovich, Alfredo Weitzenfeld, Jean-Marc Fellous, Peter Ford Dominey","doi":"10.1007/s00422-022-00945-6","DOIUrl":null,"url":null,"abstract":"<p><p>Sequential behavior unfolds both in space and in time. The same spatial trajectory can be realized in different manners in the same overall time by changing instantaneous speeds. The current research investigates how speed profiles might be given behavioral significance and how cortical networks might encode this information. We first demonstrate that rats can associate different speed patterns on the same trajectory with distinct behavioral choices. In this novel experimental paradigm, rats follow a small baited robot in a large megaspace environment where the rat's speed is precisely controlled by the robot's speed. Based on this proof of concept and research showing that recurrent reservoir networks are ideal for representing spatio-temporal structures, we then test reservoir networks in simulated navigation contexts and demonstrate they can discriminate between traversals of the same path with identical durations but different speed profiles. We then test the networks in an embodied robotic setup, where we use place cell representations from physically navigating robots as input and again successfully discriminate between traversals. To demonstrate that this capability is inherent to recurrent networks, we compared the model against simple linear integrators. Interestingly, although the linear integrators could also perform the speed profile discrimination, a clear difference emerged when examining information coding in both models. Reservoir neurons displayed a form of statistical mixed selectivity as a complex interaction between spatial location and speed that was not as abundant in the linear integrators. This mixed selectivity is characteristic of cortex and reservoirs and allows us to generate specific predictions about the neural activity that will be recorded in rat cortex in future experiments.</p>","PeriodicalId":55374,"journal":{"name":"Biological Cybernetics","volume":"116 5-6","pages":"585-610"},"PeriodicalIF":1.7000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integration of velocity-dependent spatio-temporal structure of place cell activation during navigation in a reservoir model of prefrontal cortex.\",\"authors\":\"Pablo Scleidorovich, Alfredo Weitzenfeld, Jean-Marc Fellous, Peter Ford Dominey\",\"doi\":\"10.1007/s00422-022-00945-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sequential behavior unfolds both in space and in time. The same spatial trajectory can be realized in different manners in the same overall time by changing instantaneous speeds. The current research investigates how speed profiles might be given behavioral significance and how cortical networks might encode this information. We first demonstrate that rats can associate different speed patterns on the same trajectory with distinct behavioral choices. In this novel experimental paradigm, rats follow a small baited robot in a large megaspace environment where the rat's speed is precisely controlled by the robot's speed. Based on this proof of concept and research showing that recurrent reservoir networks are ideal for representing spatio-temporal structures, we then test reservoir networks in simulated navigation contexts and demonstrate they can discriminate between traversals of the same path with identical durations but different speed profiles. We then test the networks in an embodied robotic setup, where we use place cell representations from physically navigating robots as input and again successfully discriminate between traversals. To demonstrate that this capability is inherent to recurrent networks, we compared the model against simple linear integrators. Interestingly, although the linear integrators could also perform the speed profile discrimination, a clear difference emerged when examining information coding in both models. Reservoir neurons displayed a form of statistical mixed selectivity as a complex interaction between spatial location and speed that was not as abundant in the linear integrators. This mixed selectivity is characteristic of cortex and reservoirs and allows us to generate specific predictions about the neural activity that will be recorded in rat cortex in future experiments.</p>\",\"PeriodicalId\":55374,\"journal\":{\"name\":\"Biological Cybernetics\",\"volume\":\"116 5-6\",\"pages\":\"585-610\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Cybernetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00422-022-00945-6\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Cybernetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00422-022-00945-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
Integration of velocity-dependent spatio-temporal structure of place cell activation during navigation in a reservoir model of prefrontal cortex.
Sequential behavior unfolds both in space and in time. The same spatial trajectory can be realized in different manners in the same overall time by changing instantaneous speeds. The current research investigates how speed profiles might be given behavioral significance and how cortical networks might encode this information. We first demonstrate that rats can associate different speed patterns on the same trajectory with distinct behavioral choices. In this novel experimental paradigm, rats follow a small baited robot in a large megaspace environment where the rat's speed is precisely controlled by the robot's speed. Based on this proof of concept and research showing that recurrent reservoir networks are ideal for representing spatio-temporal structures, we then test reservoir networks in simulated navigation contexts and demonstrate they can discriminate between traversals of the same path with identical durations but different speed profiles. We then test the networks in an embodied robotic setup, where we use place cell representations from physically navigating robots as input and again successfully discriminate between traversals. To demonstrate that this capability is inherent to recurrent networks, we compared the model against simple linear integrators. Interestingly, although the linear integrators could also perform the speed profile discrimination, a clear difference emerged when examining information coding in both models. Reservoir neurons displayed a form of statistical mixed selectivity as a complex interaction between spatial location and speed that was not as abundant in the linear integrators. This mixed selectivity is characteristic of cortex and reservoirs and allows us to generate specific predictions about the neural activity that will be recorded in rat cortex in future experiments.
期刊介绍:
Biological Cybernetics is an interdisciplinary medium for theoretical and application-oriented aspects of information processing in organisms, including sensory, motor, cognitive, and ecological phenomena. Topics covered include: mathematical modeling of biological systems; computational, theoretical or engineering studies with relevance for understanding biological information processing; and artificial implementation of biological information processing and self-organizing principles. Under the main aspects of performance and function of systems, emphasis is laid on communication between life sciences and technical/theoretical disciplines.