Licai Huang, Paul Little, Jeroen R Huyghe, Qian Shi, Tabitha A Harrison, Greg Yothers, Thomas J George, Ulrike Peters, Andrew T Chan, Polly A Newcomb, Wei Sun
{"title":"细胞类型组成关联分析的统计方法。","authors":"Licai Huang, Paul Little, Jeroen R Huyghe, Qian Shi, Tabitha A Harrison, Greg Yothers, Thomas J George, Ulrike Peters, Andrew T Chan, Polly A Newcomb, Wei Sun","doi":"10.1007/s12561-020-09293-0","DOIUrl":null,"url":null,"abstract":"<p><p>Gene expression data are often collected from tissue samples that are composed of multiple cell types. Studies of cell type composition based on gene expression data from tissue samples have recently attracted increasing research interest and led to new method development for cell type composition estimation. This new information on cell type composition can be associated with individual characteristics (e.g., genetic variants) or clinical outcomes (e.g., survival time). Such association analysis can be conducted for each cell type separately followed by multiple testing correction. An alternative approach is to evaluate this association using the composition of all the cell types, thus aggregating association signals across cell types. A key challenge of this approach is to account for the dependence across cell types. We propose a new method to quantify the distances between cell types while accounting for their dependencies, and use this information for association analysis. We demonstrate our method in two applied examples: to assess the association between immune cell type composition in tumor samples of colorectal cancer patients versus survival time and SNP genotypes. We found immune cell composition has prognostic value, and our distance metric leads to more accurate survival time prediction than other distance metrics that ignore cell type dependencies. In addition, survival time-associated SNPs are enriched among the SNPs associated with immune cell composition.</p>","PeriodicalId":45094,"journal":{"name":"Statistics in Biosciences","volume":"13 3","pages":"373-385"},"PeriodicalIF":0.8000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12561-020-09293-0","citationCount":"0","resultStr":"{\"title\":\"A Statistical Method for Association Analysis of Cell Type Compositions.\",\"authors\":\"Licai Huang, Paul Little, Jeroen R Huyghe, Qian Shi, Tabitha A Harrison, Greg Yothers, Thomas J George, Ulrike Peters, Andrew T Chan, Polly A Newcomb, Wei Sun\",\"doi\":\"10.1007/s12561-020-09293-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gene expression data are often collected from tissue samples that are composed of multiple cell types. Studies of cell type composition based on gene expression data from tissue samples have recently attracted increasing research interest and led to new method development for cell type composition estimation. This new information on cell type composition can be associated with individual characteristics (e.g., genetic variants) or clinical outcomes (e.g., survival time). Such association analysis can be conducted for each cell type separately followed by multiple testing correction. An alternative approach is to evaluate this association using the composition of all the cell types, thus aggregating association signals across cell types. A key challenge of this approach is to account for the dependence across cell types. We propose a new method to quantify the distances between cell types while accounting for their dependencies, and use this information for association analysis. We demonstrate our method in two applied examples: to assess the association between immune cell type composition in tumor samples of colorectal cancer patients versus survival time and SNP genotypes. We found immune cell composition has prognostic value, and our distance metric leads to more accurate survival time prediction than other distance metrics that ignore cell type dependencies. In addition, survival time-associated SNPs are enriched among the SNPs associated with immune cell composition.</p>\",\"PeriodicalId\":45094,\"journal\":{\"name\":\"Statistics in Biosciences\",\"volume\":\"13 3\",\"pages\":\"373-385\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s12561-020-09293-0\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics in Biosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12561-020-09293-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/9/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Biosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12561-020-09293-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/9/15 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
A Statistical Method for Association Analysis of Cell Type Compositions.
Gene expression data are often collected from tissue samples that are composed of multiple cell types. Studies of cell type composition based on gene expression data from tissue samples have recently attracted increasing research interest and led to new method development for cell type composition estimation. This new information on cell type composition can be associated with individual characteristics (e.g., genetic variants) or clinical outcomes (e.g., survival time). Such association analysis can be conducted for each cell type separately followed by multiple testing correction. An alternative approach is to evaluate this association using the composition of all the cell types, thus aggregating association signals across cell types. A key challenge of this approach is to account for the dependence across cell types. We propose a new method to quantify the distances between cell types while accounting for their dependencies, and use this information for association analysis. We demonstrate our method in two applied examples: to assess the association between immune cell type composition in tumor samples of colorectal cancer patients versus survival time and SNP genotypes. We found immune cell composition has prognostic value, and our distance metric leads to more accurate survival time prediction than other distance metrics that ignore cell type dependencies. In addition, survival time-associated SNPs are enriched among the SNPs associated with immune cell composition.
期刊介绍:
Statistics in Biosciences (SIBS) is published three times a year in print and electronic form. It aims at development and application of statistical methods and their interface with other quantitative methods, such as computational and mathematical methods, in biological and life science, health science, and biopharmaceutical and biotechnological science.
SIBS publishes scientific papers and review articles in four sections, with the first two sections as the primary sections. Original Articles publish novel statistical and quantitative methods in biosciences. The Bioscience Case Studies and Practice Articles publish papers that advance statistical practice in biosciences, such as case studies, innovative applications of existing methods that further understanding of subject-matter science, evaluation of existing methods and data sources. Review Articles publish papers that review an area of statistical and quantitative methodology, software, and data sources in biosciences. Commentaries provide perspectives of research topics or policy issues that are of current quantitative interest in biosciences, reactions to an article published in the journal, and scholarly essays. Substantive science is essential in motivating and demonstrating the methodological development and use for an article to be acceptable. Articles published in SIBS share the goal of promoting evidence-based real world practice and policy making through effective and timely interaction and communication of statisticians and quantitative researchers with subject-matter scientists in biosciences.