遗传对分子网络状态的影响解释了复杂的性状。

IF 8.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Matthias Weith, Jan Großbach, Mathieu Clement-Ziza, Ludovic Gillet, María Rodríguez-López, Samuel Marguerat, Christopher T Workman, Paola Picotti, Jürg Bähler, Ruedi Aebersold, Andreas Beyer
{"title":"遗传对分子网络状态的影响解释了复杂的性状。","authors":"Matthias Weith,&nbsp;Jan Großbach,&nbsp;Mathieu Clement-Ziza,&nbsp;Ludovic Gillet,&nbsp;María Rodríguez-López,&nbsp;Samuel Marguerat,&nbsp;Christopher T Workman,&nbsp;Paola Picotti,&nbsp;Jürg Bähler,&nbsp;Ruedi Aebersold,&nbsp;Andreas Beyer","doi":"10.15252/msb.202211493","DOIUrl":null,"url":null,"abstract":"<p><p>The complexity of many cellular and organismal traits results from the integration of genetic and environmental factors via molecular networks. Network structure and effect propagation are best understood at the level of functional modules, but so far, no concept has been established to include the global network state. Here, we show when and how genetic perturbations lead to molecular changes that are confined to small parts of a network versus when they lead to modulation of network states. Integrating multi-omics profiling of genetically heterogeneous budding and fission yeast strains with an array of cellular traits identified a central state transition of the yeast molecular network that is related to PKA and TOR (PT) signaling. Genetic variants affecting this PT state globally shifted the molecular network along a single-dimensional axis, thereby modulating processes including energy and amino acid metabolism, transcription, translation, cell cycle control, and cellular stress response. We propose that genetic effects can propagate through large parts of molecular networks because of the functional requirement to centrally coordinate the activity of fundamental cellular processes.</p>","PeriodicalId":18906,"journal":{"name":"Molecular Systems Biology","volume":null,"pages":null},"PeriodicalIF":8.5000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10407735/pdf/","citationCount":"1","resultStr":"{\"title\":\"Genetic effects on molecular network states explain complex traits.\",\"authors\":\"Matthias Weith,&nbsp;Jan Großbach,&nbsp;Mathieu Clement-Ziza,&nbsp;Ludovic Gillet,&nbsp;María Rodríguez-López,&nbsp;Samuel Marguerat,&nbsp;Christopher T Workman,&nbsp;Paola Picotti,&nbsp;Jürg Bähler,&nbsp;Ruedi Aebersold,&nbsp;Andreas Beyer\",\"doi\":\"10.15252/msb.202211493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The complexity of many cellular and organismal traits results from the integration of genetic and environmental factors via molecular networks. Network structure and effect propagation are best understood at the level of functional modules, but so far, no concept has been established to include the global network state. Here, we show when and how genetic perturbations lead to molecular changes that are confined to small parts of a network versus when they lead to modulation of network states. Integrating multi-omics profiling of genetically heterogeneous budding and fission yeast strains with an array of cellular traits identified a central state transition of the yeast molecular network that is related to PKA and TOR (PT) signaling. Genetic variants affecting this PT state globally shifted the molecular network along a single-dimensional axis, thereby modulating processes including energy and amino acid metabolism, transcription, translation, cell cycle control, and cellular stress response. We propose that genetic effects can propagate through large parts of molecular networks because of the functional requirement to centrally coordinate the activity of fundamental cellular processes.</p>\",\"PeriodicalId\":18906,\"journal\":{\"name\":\"Molecular Systems Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2023-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10407735/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Systems Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.15252/msb.202211493\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.15252/msb.202211493","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

许多细胞和有机体特性的复杂性是遗传和环境因素通过分子网络整合的结果。网络结构和效应传播最好理解在功能模块层面,但到目前为止,还没有建立包括全局网络状态的概念。在这里,我们展示了遗传扰动何时以及如何导致局限于网络小部分的分子变化,而不是何时导致网络状态的调节。将遗传异质性出芽和裂变酵母菌株的多组学分析与一系列细胞性状相结合,确定了酵母分子网络的中心状态转变,该网络与PKA和TOR (PT)信号传导有关。影响这种PT状态的遗传变异在全局上沿着一维轴移动分子网络,从而调节包括能量和氨基酸代谢、转录、翻译、细胞周期控制和细胞应激反应在内的过程。我们认为遗传效应可以通过大部分分子网络传播,因为功能要求集中协调基本细胞过程的活动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Genetic effects on molecular network states explain complex traits.

Genetic effects on molecular network states explain complex traits.

Genetic effects on molecular network states explain complex traits.

Genetic effects on molecular network states explain complex traits.

The complexity of many cellular and organismal traits results from the integration of genetic and environmental factors via molecular networks. Network structure and effect propagation are best understood at the level of functional modules, but so far, no concept has been established to include the global network state. Here, we show when and how genetic perturbations lead to molecular changes that are confined to small parts of a network versus when they lead to modulation of network states. Integrating multi-omics profiling of genetically heterogeneous budding and fission yeast strains with an array of cellular traits identified a central state transition of the yeast molecular network that is related to PKA and TOR (PT) signaling. Genetic variants affecting this PT state globally shifted the molecular network along a single-dimensional axis, thereby modulating processes including energy and amino acid metabolism, transcription, translation, cell cycle control, and cellular stress response. We propose that genetic effects can propagate through large parts of molecular networks because of the functional requirement to centrally coordinate the activity of fundamental cellular processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Systems Biology
Molecular Systems Biology 生物-生化与分子生物学
CiteScore
18.50
自引率
1.00%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Systems biology is a field that aims to understand complex biological systems by studying their components and how they interact. It is an integrative discipline that seeks to explain the properties and behavior of these systems. Molecular Systems Biology is a scholarly journal that publishes top-notch research in the areas of systems biology, synthetic biology, and systems medicine. It is an open access journal, meaning that its content is freely available to readers, and it is peer-reviewed to ensure the quality of the published work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信