星形胶质细胞-神经网络偶联一氧化氮的涌现动力学。

IF 2 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Bhanu Sharma, Spandan Kumar, Subhendu Ghosh, Vikram Singh
{"title":"星形胶质细胞-神经网络偶联一氧化氮的涌现动力学。","authors":"Bhanu Sharma,&nbsp;Spandan Kumar,&nbsp;Subhendu Ghosh,&nbsp;Vikram Singh","doi":"10.1088/1478-3975/ace8e6","DOIUrl":null,"url":null,"abstract":"<p><p>In the brain, both neurons and glial cells work in conjunction with each other during information processing. Stimulation of neurons can induce calcium oscillations in astrocytes which in turn can affect neuronal calcium dynamics. The 'glissandi' effect is one such phenomenon, associated with a decrease in infraslow fluctuations, in which synchronized calcium oscillations propagate as a wave in hundreds of astrocytes. Nitric oxide molecules released from the astrocytes contribute to synaptic functions based on the underlying astrocyte-neuron interaction network. In this study, by defining an astrocyte-neuronal (A-N) calcium unit as an integrated circuit of one neuron and one astrocyte, we developed a minimal model of neuronal stimulus-dependent and NO-mediated emergence of calcium waves in astrocytes. Incorporating inter-unit communication<i>via</i>NO molecules, a coupled network of 1000 such A-N calcium units is developed in which multiple stable regimes were found to emerge in astrocytes. We examined the ranges of neuronal stimulus strength and the coupling strength between A-N calcium units that give rise to such dynamical behaviors. We also report that there exists a range of coupling strength, wherein units not receiving stimulus also start showing oscillations and become synchronized. Our results support the hypothesis that glissandi-like phenomena exhibiting synchronized calcium oscillations in astrocytes help in efficient synaptic transmission by reducing the energy demand of the process.</p>","PeriodicalId":20207,"journal":{"name":"Physical biology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emergent dynamics in an astrocyte-neuronal network coupled<i>via</i>nitric oxide.\",\"authors\":\"Bhanu Sharma,&nbsp;Spandan Kumar,&nbsp;Subhendu Ghosh,&nbsp;Vikram Singh\",\"doi\":\"10.1088/1478-3975/ace8e6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the brain, both neurons and glial cells work in conjunction with each other during information processing. Stimulation of neurons can induce calcium oscillations in astrocytes which in turn can affect neuronal calcium dynamics. The 'glissandi' effect is one such phenomenon, associated with a decrease in infraslow fluctuations, in which synchronized calcium oscillations propagate as a wave in hundreds of astrocytes. Nitric oxide molecules released from the astrocytes contribute to synaptic functions based on the underlying astrocyte-neuron interaction network. In this study, by defining an astrocyte-neuronal (A-N) calcium unit as an integrated circuit of one neuron and one astrocyte, we developed a minimal model of neuronal stimulus-dependent and NO-mediated emergence of calcium waves in astrocytes. Incorporating inter-unit communication<i>via</i>NO molecules, a coupled network of 1000 such A-N calcium units is developed in which multiple stable regimes were found to emerge in astrocytes. We examined the ranges of neuronal stimulus strength and the coupling strength between A-N calcium units that give rise to such dynamical behaviors. We also report that there exists a range of coupling strength, wherein units not receiving stimulus also start showing oscillations and become synchronized. Our results support the hypothesis that glissandi-like phenomena exhibiting synchronized calcium oscillations in astrocytes help in efficient synaptic transmission by reducing the energy demand of the process.</p>\",\"PeriodicalId\":20207,\"journal\":{\"name\":\"Physical biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1088/1478-3975/ace8e6\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1088/1478-3975/ace8e6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在大脑中,神经元和神经胶质细胞在信息处理过程中相互协作。刺激神经元可诱导星形胶质细胞内钙离子振荡,进而影响神经元钙离子动力学。“glissandi”效应就是这样一种现象,它与次流波动的减少有关,在次流波动中,同步的钙振荡以波的形式在数百个星形胶质细胞中传播。从星形胶质细胞释放的一氧化氮分子有助于基于潜在星形胶质细胞-神经元相互作用网络的突触功能。在本研究中,通过将星形细胞-神经元(a -n)钙单元定义为一个神经元和一个星形细胞的集成电路,我们建立了星形细胞中神经元刺激依赖和no介导的钙波出现的最小模型。结合通过ano分子的单位间通信,形成了一个由1000个这样的a - n钙单位组成的耦合网络,其中发现星形胶质细胞中出现了多种稳定的状态。我们检查了神经元刺激强度的范围和引起这种动态行为的A-N钙单位之间的耦合强度。我们还报告了存在耦合强度范围,其中未接受刺激的单元也开始显示振荡并变得同步。我们的研究结果支持了一种假设,即星形胶质细胞中显示同步钙振荡的glissani样现象通过减少该过程的能量需求来帮助有效的突触传递。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Emergent dynamics in an astrocyte-neuronal network coupledvianitric oxide.

In the brain, both neurons and glial cells work in conjunction with each other during information processing. Stimulation of neurons can induce calcium oscillations in astrocytes which in turn can affect neuronal calcium dynamics. The 'glissandi' effect is one such phenomenon, associated with a decrease in infraslow fluctuations, in which synchronized calcium oscillations propagate as a wave in hundreds of astrocytes. Nitric oxide molecules released from the astrocytes contribute to synaptic functions based on the underlying astrocyte-neuron interaction network. In this study, by defining an astrocyte-neuronal (A-N) calcium unit as an integrated circuit of one neuron and one astrocyte, we developed a minimal model of neuronal stimulus-dependent and NO-mediated emergence of calcium waves in astrocytes. Incorporating inter-unit communicationviaNO molecules, a coupled network of 1000 such A-N calcium units is developed in which multiple stable regimes were found to emerge in astrocytes. We examined the ranges of neuronal stimulus strength and the coupling strength between A-N calcium units that give rise to such dynamical behaviors. We also report that there exists a range of coupling strength, wherein units not receiving stimulus also start showing oscillations and become synchronized. Our results support the hypothesis that glissandi-like phenomena exhibiting synchronized calcium oscillations in astrocytes help in efficient synaptic transmission by reducing the energy demand of the process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical biology
Physical biology 生物-生物物理
CiteScore
4.20
自引率
0.00%
发文量
50
审稿时长
3 months
期刊介绍: Physical Biology publishes articles in the broad interdisciplinary field bridging biology with the physical sciences and engineering. This journal focuses on research in which quantitative approaches – experimental, theoretical and modeling – lead to new insights into biological systems at all scales of space and time, and all levels of organizational complexity. Physical Biology accepts contributions from a wide range of biological sub-fields, including topics such as: molecular biophysics, including single molecule studies, protein-protein and protein-DNA interactions subcellular structures, organelle dynamics, membranes, protein assemblies, chromosome structure intracellular processes, e.g. cytoskeleton dynamics, cellular transport, cell division systems biology, e.g. signaling, gene regulation and metabolic networks cells and their microenvironment, e.g. cell mechanics and motility, chemotaxis, extracellular matrix, biofilms cell-material interactions, e.g. biointerfaces, electrical stimulation and sensing, endocytosis cell-cell interactions, cell aggregates, organoids, tissues and organs developmental dynamics, including pattern formation and morphogenesis physical and evolutionary aspects of disease, e.g. cancer progression, amyloid formation neuronal systems, including information processing by networks, memory and learning population dynamics, ecology, and evolution collective action and emergence of collective phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信