电机驱动的平流与拥挤竞争,驱动细胞骨架复合材料的时空异质性运输。

IF 1.9 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Janet Y Sheung, Jonathan Garamella, Stella K Kahl, Brian Y Lee, Ryan J McGorty, Rae M Robertson-Anderson
{"title":"电机驱动的平流与拥挤竞争,驱动细胞骨架复合材料的时空异质性运输。","authors":"Janet Y Sheung,&nbsp;Jonathan Garamella,&nbsp;Stella K Kahl,&nbsp;Brian Y Lee,&nbsp;Ryan J McGorty,&nbsp;Rae M Robertson-Anderson","doi":"10.3389/fphy.2022.1055441","DOIUrl":null,"url":null,"abstract":"<p><p>The cytoskeleton-a composite network of biopolymers, molecular motors, and associated binding proteins-is a paradigmatic example of active matter. Particle transport through the cytoskeleton can range from anomalous and heterogeneous subdiffusion to superdiffusion and advection. Yet, recapitulating and understanding these properties-ubiquitous to the cytoskeleton and other out-of-equilibrium soft matter systems-remains challenging. Here, we combine light sheet microscopy with differential dynamic microscopy and single-particle tracking to elucidate anomalous and advective transport in actomyosin-microtubule composites. We show that particles exhibit multi-mode transport that transitions from pronounced subdiffusion to superdiffusion at tunable crossover timescales. Surprisingly, while higher actomyosin content increases the range of timescales over which transport is superdiffusive, it also markedly increases the degree of subdiffusion at short timescales and generally slows transport. Corresponding displacement distributions display unique combinations of non-Gaussianity, asymmetry, and non-zero modes, indicative of directed advection coupled with caged diffusion and hopping. At larger spatiotemporal scales, particles in active composites exhibit superdiffusive dynamics with scaling exponents that are robust to changing actomyosin fractions, in contrast to normal, yet faster, diffusion in networks without actomyosin. Our specific results shed important new light on the interplay between non-equilibrium processes, crowding and heterogeneity in active cytoskeletal systems. More generally, our approach is broadly applicable to active matter systems to elucidate transport and dynamics across scales.</p>","PeriodicalId":12507,"journal":{"name":"Frontiers in Physics","volume":"10 ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10403238/pdf/","citationCount":"4","resultStr":"{\"title\":\"Motor-driven advection competes with crowding to drive spatiotemporally heterogeneous transport in cytoskeleton composites.\",\"authors\":\"Janet Y Sheung,&nbsp;Jonathan Garamella,&nbsp;Stella K Kahl,&nbsp;Brian Y Lee,&nbsp;Ryan J McGorty,&nbsp;Rae M Robertson-Anderson\",\"doi\":\"10.3389/fphy.2022.1055441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The cytoskeleton-a composite network of biopolymers, molecular motors, and associated binding proteins-is a paradigmatic example of active matter. Particle transport through the cytoskeleton can range from anomalous and heterogeneous subdiffusion to superdiffusion and advection. Yet, recapitulating and understanding these properties-ubiquitous to the cytoskeleton and other out-of-equilibrium soft matter systems-remains challenging. Here, we combine light sheet microscopy with differential dynamic microscopy and single-particle tracking to elucidate anomalous and advective transport in actomyosin-microtubule composites. We show that particles exhibit multi-mode transport that transitions from pronounced subdiffusion to superdiffusion at tunable crossover timescales. Surprisingly, while higher actomyosin content increases the range of timescales over which transport is superdiffusive, it also markedly increases the degree of subdiffusion at short timescales and generally slows transport. Corresponding displacement distributions display unique combinations of non-Gaussianity, asymmetry, and non-zero modes, indicative of directed advection coupled with caged diffusion and hopping. At larger spatiotemporal scales, particles in active composites exhibit superdiffusive dynamics with scaling exponents that are robust to changing actomyosin fractions, in contrast to normal, yet faster, diffusion in networks without actomyosin. Our specific results shed important new light on the interplay between non-equilibrium processes, crowding and heterogeneity in active cytoskeletal systems. More generally, our approach is broadly applicable to active matter systems to elucidate transport and dynamics across scales.</p>\",\"PeriodicalId\":12507,\"journal\":{\"name\":\"Frontiers in Physics\",\"volume\":\"10 \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10403238/pdf/\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3389/fphy.2022.1055441\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3389/fphy.2022.1055441","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

摘要

细胞骨架——由生物聚合物、分子马达和相关结合蛋白组成的复合网络——是活性物质的典型例子。颗粒通过细胞骨架的运输可以从异常和不均匀的亚扩散到超扩散和平流。然而,概括和理解这些在细胞骨架和其他非平衡软物质系统中普遍存在的特性仍然具有挑战性。在这里,我们结合了薄层显微镜、差分动态显微镜和单粒子跟踪来阐明肌动球蛋白微管复合材料中的异常和平流运输。我们表明,在可调的交叉时间尺度上,粒子表现出从明显的亚扩散到超扩散的多模输运。令人惊讶的是,虽然较高的肌动球蛋白含量增加了运输超扩散的时间尺度范围,但它也显着增加了短时间尺度的亚扩散程度,并且通常减缓了运输。相应的位移分布显示出非高斯、非对称和非零模式的独特组合,表明定向平流与笼状扩散和跳变耦合。在更大的时空尺度上,活性复合材料中的颗粒表现出超扩散动力学,其缩放指数对肌动球蛋白分数的变化具有鲁棒性,与没有肌动球蛋白的网络中正常但更快的扩散形成对比。我们的具体结果揭示了活跃细胞骨架系统中非平衡过程、拥挤和异质性之间的相互作用。更一般地说,我们的方法广泛适用于活性物质系统,以阐明跨尺度的运输和动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Motor-driven advection competes with crowding to drive spatiotemporally heterogeneous transport in cytoskeleton composites.

Motor-driven advection competes with crowding to drive spatiotemporally heterogeneous transport in cytoskeleton composites.

Motor-driven advection competes with crowding to drive spatiotemporally heterogeneous transport in cytoskeleton composites.

Motor-driven advection competes with crowding to drive spatiotemporally heterogeneous transport in cytoskeleton composites.

The cytoskeleton-a composite network of biopolymers, molecular motors, and associated binding proteins-is a paradigmatic example of active matter. Particle transport through the cytoskeleton can range from anomalous and heterogeneous subdiffusion to superdiffusion and advection. Yet, recapitulating and understanding these properties-ubiquitous to the cytoskeleton and other out-of-equilibrium soft matter systems-remains challenging. Here, we combine light sheet microscopy with differential dynamic microscopy and single-particle tracking to elucidate anomalous and advective transport in actomyosin-microtubule composites. We show that particles exhibit multi-mode transport that transitions from pronounced subdiffusion to superdiffusion at tunable crossover timescales. Surprisingly, while higher actomyosin content increases the range of timescales over which transport is superdiffusive, it also markedly increases the degree of subdiffusion at short timescales and generally slows transport. Corresponding displacement distributions display unique combinations of non-Gaussianity, asymmetry, and non-zero modes, indicative of directed advection coupled with caged diffusion and hopping. At larger spatiotemporal scales, particles in active composites exhibit superdiffusive dynamics with scaling exponents that are robust to changing actomyosin fractions, in contrast to normal, yet faster, diffusion in networks without actomyosin. Our specific results shed important new light on the interplay between non-equilibrium processes, crowding and heterogeneity in active cytoskeletal systems. More generally, our approach is broadly applicable to active matter systems to elucidate transport and dynamics across scales.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Physics
Frontiers in Physics Mathematics-Mathematical Physics
CiteScore
4.50
自引率
6.50%
发文量
1215
审稿时长
12 weeks
期刊介绍: Frontiers in Physics publishes rigorously peer-reviewed research across the entire field, from experimental, to computational and theoretical physics. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, engineers and the public worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信