{"title":"基于并行学习的欠驱动机器人系统的自适应控制,保证驱动和非驱动运动的瞬态性能。","authors":"Tong Yang, Ning Sun, Zhuoqing Liu, Yongchun Fang","doi":"10.1109/TNNLS.2023.3311927","DOIUrl":null,"url":null,"abstract":"<p><p>With the wide applications of underactuated robotic systems, more complex tasks and higher safety demands are put forward. However, it is still an open issue to utilize \"fewer\" control inputs to satisfy control accuracy and transient performance with theoretical and practical guarantee, especially for unactuated variables. To this end, for underactuated robotic systems, this article designs an adaptive tracking controller to realize exponential convergence results, rather than only asymptotic stability or boundedness; meanwhile, unactuated states exponentially converge to a small enough bound, which is adjustable by control gains. The maximum motion ranges and convergence speed of all variables both exhibit satisfactory performance with higher safety and efficiency. Here, a data-driven concurrent learning (CL) method is proposed to compensate for unknown dynamics/disturbances and improve the estimate accuracy of parameters/weights, without the need for persistency of excitation or linear parametrization (LP) conditions. Then, a disturbance judgment mechanism is utilized to eliminate the detrimental impacts of external disturbances. As far as we know, for general underactuated systems with uncertainties/disturbances, it is the first time to theoretically and practically ensure transient performance and exponential convergence speed for unactuated states, and simultaneously obtain the exponential tracking result of actuated motions. Both theoretical analysis and hardware experiment results illustrate the effectiveness of the designed controller.</p>","PeriodicalId":13303,"journal":{"name":"IEEE transactions on neural networks and learning systems","volume":"PP ","pages":""},"PeriodicalIF":10.2000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Concurrent Learning-Based Adaptive Control of Underactuated Robotic Systems With Guaranteed Transient Performance for Both Actuated and Unactuated Motions.\",\"authors\":\"Tong Yang, Ning Sun, Zhuoqing Liu, Yongchun Fang\",\"doi\":\"10.1109/TNNLS.2023.3311927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the wide applications of underactuated robotic systems, more complex tasks and higher safety demands are put forward. However, it is still an open issue to utilize \\\"fewer\\\" control inputs to satisfy control accuracy and transient performance with theoretical and practical guarantee, especially for unactuated variables. To this end, for underactuated robotic systems, this article designs an adaptive tracking controller to realize exponential convergence results, rather than only asymptotic stability or boundedness; meanwhile, unactuated states exponentially converge to a small enough bound, which is adjustable by control gains. The maximum motion ranges and convergence speed of all variables both exhibit satisfactory performance with higher safety and efficiency. Here, a data-driven concurrent learning (CL) method is proposed to compensate for unknown dynamics/disturbances and improve the estimate accuracy of parameters/weights, without the need for persistency of excitation or linear parametrization (LP) conditions. Then, a disturbance judgment mechanism is utilized to eliminate the detrimental impacts of external disturbances. As far as we know, for general underactuated systems with uncertainties/disturbances, it is the first time to theoretically and practically ensure transient performance and exponential convergence speed for unactuated states, and simultaneously obtain the exponential tracking result of actuated motions. Both theoretical analysis and hardware experiment results illustrate the effectiveness of the designed controller.</p>\",\"PeriodicalId\":13303,\"journal\":{\"name\":\"IEEE transactions on neural networks and learning systems\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":10.2000,\"publicationDate\":\"2023-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on neural networks and learning systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TNNLS.2023.3311927\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks and learning systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TNNLS.2023.3311927","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Concurrent Learning-Based Adaptive Control of Underactuated Robotic Systems With Guaranteed Transient Performance for Both Actuated and Unactuated Motions.
With the wide applications of underactuated robotic systems, more complex tasks and higher safety demands are put forward. However, it is still an open issue to utilize "fewer" control inputs to satisfy control accuracy and transient performance with theoretical and practical guarantee, especially for unactuated variables. To this end, for underactuated robotic systems, this article designs an adaptive tracking controller to realize exponential convergence results, rather than only asymptotic stability or boundedness; meanwhile, unactuated states exponentially converge to a small enough bound, which is adjustable by control gains. The maximum motion ranges and convergence speed of all variables both exhibit satisfactory performance with higher safety and efficiency. Here, a data-driven concurrent learning (CL) method is proposed to compensate for unknown dynamics/disturbances and improve the estimate accuracy of parameters/weights, without the need for persistency of excitation or linear parametrization (LP) conditions. Then, a disturbance judgment mechanism is utilized to eliminate the detrimental impacts of external disturbances. As far as we know, for general underactuated systems with uncertainties/disturbances, it is the first time to theoretically and practically ensure transient performance and exponential convergence speed for unactuated states, and simultaneously obtain the exponential tracking result of actuated motions. Both theoretical analysis and hardware experiment results illustrate the effectiveness of the designed controller.
期刊介绍:
The focus of IEEE Transactions on Neural Networks and Learning Systems is to present scholarly articles discussing the theory, design, and applications of neural networks as well as other learning systems. The journal primarily highlights technical and scientific research in this domain.