Yusuf Dalva, Hamza Pehlivan, Said Fahri Altindis, Aysegul Dundar
{"title":"实例分割模型的鲁棒性基准测试。","authors":"Yusuf Dalva, Hamza Pehlivan, Said Fahri Altindis, Aysegul Dundar","doi":"10.1109/TNNLS.2023.3310985","DOIUrl":null,"url":null,"abstract":"<p><p>This article presents a comprehensive evaluation of instance segmentation models with respect to real-world image corruptions as well as out-of-domain image collections, e.g., images captured by a different set-up than the training dataset. The out-of-domain image evaluation shows the generalization capability of models, an essential aspect of real-world applications, and an extensively studied topic of domain adaptation. These presented robustness and generalization evaluations are important when designing instance segmentation models for real-world applications and picking an off-the-shelf pretrained model to directly use for the task at hand. Specifically, this benchmark study includes state-of-the-art network architectures, network backbones, normalization layers, models trained starting from scratch versus pretrained networks, and the effect of multitask training on robustness and generalization. Through this study, we gain several insights. For example, we find that group normalization (GN) enhances the robustness of networks across corruptions where the image contents stay the same but corruptions are added on top. On the other hand, batch normalization (BN) improves the generalization of the models across different datasets where statistics of image features change. We also find that single-stage detectors do not generalize well to larger image resolutions than their training size. On the other hand, multistage detectors can easily be used on images of different sizes. We hope that our comprehensive study will motivate the development of more robust and reliable instance segmentation models.</p>","PeriodicalId":13303,"journal":{"name":"IEEE transactions on neural networks and learning systems","volume":"PP ","pages":""},"PeriodicalIF":10.2000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Benchmarking the Robustness of Instance Segmentation Models.\",\"authors\":\"Yusuf Dalva, Hamza Pehlivan, Said Fahri Altindis, Aysegul Dundar\",\"doi\":\"10.1109/TNNLS.2023.3310985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This article presents a comprehensive evaluation of instance segmentation models with respect to real-world image corruptions as well as out-of-domain image collections, e.g., images captured by a different set-up than the training dataset. The out-of-domain image evaluation shows the generalization capability of models, an essential aspect of real-world applications, and an extensively studied topic of domain adaptation. These presented robustness and generalization evaluations are important when designing instance segmentation models for real-world applications and picking an off-the-shelf pretrained model to directly use for the task at hand. Specifically, this benchmark study includes state-of-the-art network architectures, network backbones, normalization layers, models trained starting from scratch versus pretrained networks, and the effect of multitask training on robustness and generalization. Through this study, we gain several insights. For example, we find that group normalization (GN) enhances the robustness of networks across corruptions where the image contents stay the same but corruptions are added on top. On the other hand, batch normalization (BN) improves the generalization of the models across different datasets where statistics of image features change. We also find that single-stage detectors do not generalize well to larger image resolutions than their training size. On the other hand, multistage detectors can easily be used on images of different sizes. We hope that our comprehensive study will motivate the development of more robust and reliable instance segmentation models.</p>\",\"PeriodicalId\":13303,\"journal\":{\"name\":\"IEEE transactions on neural networks and learning systems\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":10.2000,\"publicationDate\":\"2023-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on neural networks and learning systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TNNLS.2023.3310985\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks and learning systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TNNLS.2023.3310985","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Benchmarking the Robustness of Instance Segmentation Models.
This article presents a comprehensive evaluation of instance segmentation models with respect to real-world image corruptions as well as out-of-domain image collections, e.g., images captured by a different set-up than the training dataset. The out-of-domain image evaluation shows the generalization capability of models, an essential aspect of real-world applications, and an extensively studied topic of domain adaptation. These presented robustness and generalization evaluations are important when designing instance segmentation models for real-world applications and picking an off-the-shelf pretrained model to directly use for the task at hand. Specifically, this benchmark study includes state-of-the-art network architectures, network backbones, normalization layers, models trained starting from scratch versus pretrained networks, and the effect of multitask training on robustness and generalization. Through this study, we gain several insights. For example, we find that group normalization (GN) enhances the robustness of networks across corruptions where the image contents stay the same but corruptions are added on top. On the other hand, batch normalization (BN) improves the generalization of the models across different datasets where statistics of image features change. We also find that single-stage detectors do not generalize well to larger image resolutions than their training size. On the other hand, multistage detectors can easily be used on images of different sizes. We hope that our comprehensive study will motivate the development of more robust and reliable instance segmentation models.
期刊介绍:
The focus of IEEE Transactions on Neural Networks and Learning Systems is to present scholarly articles discussing the theory, design, and applications of neural networks as well as other learning systems. The journal primarily highlights technical and scientific research in this domain.