Fuyan Hu, Bifeng Chen, Qing Wang, Zhiyuan Yang, Man Chu
{"title":"多组学数据分析揭示了肺腺癌中选择性剪接事件的生物学意义。","authors":"Fuyan Hu, Bifeng Chen, Qing Wang, Zhiyuan Yang, Man Chu","doi":"10.1142/S0219720023500208","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer is characterized by the dysregulation of alternative splicing (AS). However, the comprehensive regulatory mechanisms of AS in lung adenocarcinoma (LUAD) are poorly understood. Here, we displayed the AS landscape in LUAD based on the integrated analyses of LUAD's multi-omics data. We identified 13,995 AS events in 6309 genes as differentially expressed alternative splicing events (DEASEs) mainly covering protein-coding genes. These DEASEs were strongly linked to \"cancer hallmarks\", such as apoptosis, DNA repair, cell cycle, cell proliferation, angiogenesis, immune response, generation of precursor metabolites and energy, p53 signaling pathway and PI3K-AKT signaling pathway. We further built a regulatory network connecting splicing factors (SFs) and DEASEs. In addition, RNA-binding protein (RBP) mutations that can affect DEASEs were investigated to find some potential cancer drivers. Further association analysis demonstrated that DNA methylation levels were highly correlated with DEASEs. In summary, our results can bring new insight into understanding the mechanism of AS and provide novel biomarkers for personalized medicine of LUAD.</p>","PeriodicalId":48910,"journal":{"name":"Journal of Bioinformatics and Computational Biology","volume":"21 4","pages":"2350020"},"PeriodicalIF":0.9000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-omics data analysis reveals the biological implications of alternative splicing events in lung adenocarcinoma.\",\"authors\":\"Fuyan Hu, Bifeng Chen, Qing Wang, Zhiyuan Yang, Man Chu\",\"doi\":\"10.1142/S0219720023500208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cancer is characterized by the dysregulation of alternative splicing (AS). However, the comprehensive regulatory mechanisms of AS in lung adenocarcinoma (LUAD) are poorly understood. Here, we displayed the AS landscape in LUAD based on the integrated analyses of LUAD's multi-omics data. We identified 13,995 AS events in 6309 genes as differentially expressed alternative splicing events (DEASEs) mainly covering protein-coding genes. These DEASEs were strongly linked to \\\"cancer hallmarks\\\", such as apoptosis, DNA repair, cell cycle, cell proliferation, angiogenesis, immune response, generation of precursor metabolites and energy, p53 signaling pathway and PI3K-AKT signaling pathway. We further built a regulatory network connecting splicing factors (SFs) and DEASEs. In addition, RNA-binding protein (RBP) mutations that can affect DEASEs were investigated to find some potential cancer drivers. Further association analysis demonstrated that DNA methylation levels were highly correlated with DEASEs. In summary, our results can bring new insight into understanding the mechanism of AS and provide novel biomarkers for personalized medicine of LUAD.</p>\",\"PeriodicalId\":48910,\"journal\":{\"name\":\"Journal of Bioinformatics and Computational Biology\",\"volume\":\"21 4\",\"pages\":\"2350020\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bioinformatics and Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1142/S0219720023500208\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioinformatics and Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/S0219720023500208","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/8 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Multi-omics data analysis reveals the biological implications of alternative splicing events in lung adenocarcinoma.
Cancer is characterized by the dysregulation of alternative splicing (AS). However, the comprehensive regulatory mechanisms of AS in lung adenocarcinoma (LUAD) are poorly understood. Here, we displayed the AS landscape in LUAD based on the integrated analyses of LUAD's multi-omics data. We identified 13,995 AS events in 6309 genes as differentially expressed alternative splicing events (DEASEs) mainly covering protein-coding genes. These DEASEs were strongly linked to "cancer hallmarks", such as apoptosis, DNA repair, cell cycle, cell proliferation, angiogenesis, immune response, generation of precursor metabolites and energy, p53 signaling pathway and PI3K-AKT signaling pathway. We further built a regulatory network connecting splicing factors (SFs) and DEASEs. In addition, RNA-binding protein (RBP) mutations that can affect DEASEs were investigated to find some potential cancer drivers. Further association analysis demonstrated that DNA methylation levels were highly correlated with DEASEs. In summary, our results can bring new insight into understanding the mechanism of AS and provide novel biomarkers for personalized medicine of LUAD.
期刊介绍:
The Journal of Bioinformatics and Computational Biology aims to publish high quality, original research articles, expository tutorial papers and review papers as well as short, critical comments on technical issues associated with the analysis of cellular information.
The research papers will be technical presentations of new assertions, discoveries and tools, intended for a narrower specialist community. The tutorials, reviews and critical commentary will be targeted at a broader readership of biologists who are interested in using computers but are not knowledgeable about scientific computing, and equally, computer scientists who have an interest in biology but are not familiar with current thrusts nor the language of biology. Such carefully chosen tutorials and articles should greatly accelerate the rate of entry of these new creative scientists into the field.