Hayat Ali Shah, Juan Liu, Zhihui Yang, Feng Yang, Qiang Zhang, Jing Feng
{"title":"DeepRT:使用基于分子特性的深度神经网络预测化合物在通路模块中的存在并分类为模块类。","authors":"Hayat Ali Shah, Juan Liu, Zhihui Yang, Feng Yang, Qiang Zhang, Jing Feng","doi":"10.1142/S0219720023500178","DOIUrl":null,"url":null,"abstract":"<p><p>Metabolic pathways play a crucial role in understanding the biochemistry of organisms. In metabolic pathways, modules refer to clusters of interconnected reactions or sub-networks representing specific functional units or biological processes within the overall pathway. In pathway modules, compounds are major elements and refer to the various molecules that participate in the biochemical reactions within the pathway modules. These molecules can include substrates, intermediates and final products. Determining the presence relation of compounds and pathway modules is essential for synthesizing new molecules and predicting hidden reactions. To date, several computational methods have been proposed to address this problem. However, all methods only predict the metabolic pathways and their types, not the pathway modules. To address this issue, we proposed a novel deep learning model, DeepRT that integrates message passing neural networks (MPNNs) and transformer encoder. This combination allows DeepRT to effectively extract global and local structure information from the molecular graph. The model is designed to perform two tasks: first, determining the present relation of the compound with the pathway module, and second, predicting the relation of query compound and module classes. The proposed DeepRT model evaluated on a dataset comprising compounds and pathway modules, and it outperforms existing approaches.</p>","PeriodicalId":48910,"journal":{"name":"Journal of Bioinformatics and Computational Biology","volume":"21 4","pages":"2350017"},"PeriodicalIF":0.9000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DeepRT: Predicting compounds presence in pathway modules and classifying into module classes using deep neural networks based on molecular properties.\",\"authors\":\"Hayat Ali Shah, Juan Liu, Zhihui Yang, Feng Yang, Qiang Zhang, Jing Feng\",\"doi\":\"10.1142/S0219720023500178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metabolic pathways play a crucial role in understanding the biochemistry of organisms. In metabolic pathways, modules refer to clusters of interconnected reactions or sub-networks representing specific functional units or biological processes within the overall pathway. In pathway modules, compounds are major elements and refer to the various molecules that participate in the biochemical reactions within the pathway modules. These molecules can include substrates, intermediates and final products. Determining the presence relation of compounds and pathway modules is essential for synthesizing new molecules and predicting hidden reactions. To date, several computational methods have been proposed to address this problem. However, all methods only predict the metabolic pathways and their types, not the pathway modules. To address this issue, we proposed a novel deep learning model, DeepRT that integrates message passing neural networks (MPNNs) and transformer encoder. This combination allows DeepRT to effectively extract global and local structure information from the molecular graph. The model is designed to perform two tasks: first, determining the present relation of the compound with the pathway module, and second, predicting the relation of query compound and module classes. The proposed DeepRT model evaluated on a dataset comprising compounds and pathway modules, and it outperforms existing approaches.</p>\",\"PeriodicalId\":48910,\"journal\":{\"name\":\"Journal of Bioinformatics and Computational Biology\",\"volume\":\"21 4\",\"pages\":\"2350017\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bioinformatics and Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1142/S0219720023500178\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioinformatics and Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/S0219720023500178","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/24 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
DeepRT: Predicting compounds presence in pathway modules and classifying into module classes using deep neural networks based on molecular properties.
Metabolic pathways play a crucial role in understanding the biochemistry of organisms. In metabolic pathways, modules refer to clusters of interconnected reactions or sub-networks representing specific functional units or biological processes within the overall pathway. In pathway modules, compounds are major elements and refer to the various molecules that participate in the biochemical reactions within the pathway modules. These molecules can include substrates, intermediates and final products. Determining the presence relation of compounds and pathway modules is essential for synthesizing new molecules and predicting hidden reactions. To date, several computational methods have been proposed to address this problem. However, all methods only predict the metabolic pathways and their types, not the pathway modules. To address this issue, we proposed a novel deep learning model, DeepRT that integrates message passing neural networks (MPNNs) and transformer encoder. This combination allows DeepRT to effectively extract global and local structure information from the molecular graph. The model is designed to perform two tasks: first, determining the present relation of the compound with the pathway module, and second, predicting the relation of query compound and module classes. The proposed DeepRT model evaluated on a dataset comprising compounds and pathway modules, and it outperforms existing approaches.
期刊介绍:
The Journal of Bioinformatics and Computational Biology aims to publish high quality, original research articles, expository tutorial papers and review papers as well as short, critical comments on technical issues associated with the analysis of cellular information.
The research papers will be technical presentations of new assertions, discoveries and tools, intended for a narrower specialist community. The tutorials, reviews and critical commentary will be targeted at a broader readership of biologists who are interested in using computers but are not knowledgeable about scientific computing, and equally, computer scientists who have an interest in biology but are not familiar with current thrusts nor the language of biology. Such carefully chosen tutorials and articles should greatly accelerate the rate of entry of these new creative scientists into the field.