五种关键基因生物标志物在肝细胞癌中的最佳表现。

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Yongjun Liu, Heping Zhang, Yuqing Xu, Yao-Zhong Liu, David P Al-Adra, Matthew M Yeh, Zhengjun Zhang
{"title":"五种关键基因生物标志物在肝细胞癌中的最佳表现。","authors":"Yongjun Liu, Heping Zhang, Yuqing Xu, Yao-Zhong Liu, David P Al-Adra, Matthew M Yeh, Zhengjun Zhang","doi":"10.1177/11769351231190477","DOIUrl":null,"url":null,"abstract":"Hepatocellular carcinoma (HCC) is one of the most fatal cancers in the world. There is an urgent need to understand the molecular background of HCC to facilitate the identification of biomarkers and discover effective therapeutic targets. Published transcriptomic studies have reported a large number of genes that are individually significant for HCC. However, reliable biomarkers remain to be determined. In this study, built on max-linear competing risk factor models, we developed a machine learning analytical framework to analyze transcriptomic data to identify the most miniature set of differentially expressed genes (DEGs). By analyzing 9 public whole-transcriptome datasets (containing 1184 HCC samples and 672 nontumor controls), we identified 5 critical differentially expressed genes (DEGs) (ie, CCDC107, CXCL12, GIGYF1, GMNN, and IFFO1) between HCC and control samples. The classifiers built on these 5 DEGs reached nearly perfect performance in identification of HCC. The performance of the 5 DEGs was further validated in a US Caucasian cohort that we collected (containing 17 HCC with paired nontumor tissue). The conceptual advance of our work lies in modeling gene-gene interactions and correcting batch effect in the analytic framework. The classifiers built on the 5 DEGs demonstrated clear signature patterns for HCC. The results are interpretable, robust, and reproducible across diverse cohorts/populations with various disease etiologies, indicating the 5 DEGs are intrinsic variables that can describe the overall features of HCC at the genomic level. The analytical framework applied in this study may pave a new way for improving transcriptome profiling analysis of human cancers.","PeriodicalId":35418,"journal":{"name":"Cancer Informatics","volume":"22 ","pages":"11769351231190477"},"PeriodicalIF":2.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/11/97/10.1177_11769351231190477.PMC10413891.pdf","citationCount":"0","resultStr":"{\"title\":\"Five Critical Gene-Based Biomarkers With Optimal Performance for Hepatocellular Carcinoma.\",\"authors\":\"Yongjun Liu, Heping Zhang, Yuqing Xu, Yao-Zhong Liu, David P Al-Adra, Matthew M Yeh, Zhengjun Zhang\",\"doi\":\"10.1177/11769351231190477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hepatocellular carcinoma (HCC) is one of the most fatal cancers in the world. There is an urgent need to understand the molecular background of HCC to facilitate the identification of biomarkers and discover effective therapeutic targets. Published transcriptomic studies have reported a large number of genes that are individually significant for HCC. However, reliable biomarkers remain to be determined. In this study, built on max-linear competing risk factor models, we developed a machine learning analytical framework to analyze transcriptomic data to identify the most miniature set of differentially expressed genes (DEGs). By analyzing 9 public whole-transcriptome datasets (containing 1184 HCC samples and 672 nontumor controls), we identified 5 critical differentially expressed genes (DEGs) (ie, CCDC107, CXCL12, GIGYF1, GMNN, and IFFO1) between HCC and control samples. The classifiers built on these 5 DEGs reached nearly perfect performance in identification of HCC. The performance of the 5 DEGs was further validated in a US Caucasian cohort that we collected (containing 17 HCC with paired nontumor tissue). The conceptual advance of our work lies in modeling gene-gene interactions and correcting batch effect in the analytic framework. The classifiers built on the 5 DEGs demonstrated clear signature patterns for HCC. The results are interpretable, robust, and reproducible across diverse cohorts/populations with various disease etiologies, indicating the 5 DEGs are intrinsic variables that can describe the overall features of HCC at the genomic level. The analytical framework applied in this study may pave a new way for improving transcriptome profiling analysis of human cancers.\",\"PeriodicalId\":35418,\"journal\":{\"name\":\"Cancer Informatics\",\"volume\":\"22 \",\"pages\":\"11769351231190477\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/11/97/10.1177_11769351231190477.PMC10413891.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/11769351231190477\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11769351231190477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肝细胞癌(HCC)是世界上最致命的癌症之一。迫切需要了解HCC的分子背景,以促进生物标志物的鉴定和发现有效的治疗靶点。已发表的转录组学研究报告了大量对HCC具有显著个体意义的基因。然而,可靠的生物标志物仍有待确定。在这项研究中,基于最大线性竞争风险因素模型,我们开发了一个机器学习分析框架来分析转录组学数据,以识别最微小的差异表达基因(deg)集。通过分析9个公开的全转录组数据集(包含1184个HCC样本和672个非肿瘤对照组),我们确定了HCC和对照样本之间的5个关键差异表达基因(deg)(即CCDC107、CXCL12、GIGYF1、GMNN和IFFO1)。基于这5个deg构建的分类器在鉴别HCC方面达到了近乎完美的性能。我们收集的美国白种人队列(包含17个配对的非肿瘤组织的HCC)进一步验证了5个DEGs的性能。我们工作的概念上的进步在于建立基因-基因相互作用的模型,并在分析框架中纠正批效应。基于5个deg构建的分类器显示出HCC的明确特征模式。研究结果在不同疾病病因的不同队列/人群中具有可解释性、稳健性和可重复性,表明5个deg是内在变量,可以在基因组水平上描述HCC的总体特征。本研究应用的分析框架可能为改进人类癌症转录组分析开辟新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Five Critical Gene-Based Biomarkers With Optimal Performance for Hepatocellular Carcinoma.

Five Critical Gene-Based Biomarkers With Optimal Performance for Hepatocellular Carcinoma.

Five Critical Gene-Based Biomarkers With Optimal Performance for Hepatocellular Carcinoma.

Five Critical Gene-Based Biomarkers With Optimal Performance for Hepatocellular Carcinoma.
Hepatocellular carcinoma (HCC) is one of the most fatal cancers in the world. There is an urgent need to understand the molecular background of HCC to facilitate the identification of biomarkers and discover effective therapeutic targets. Published transcriptomic studies have reported a large number of genes that are individually significant for HCC. However, reliable biomarkers remain to be determined. In this study, built on max-linear competing risk factor models, we developed a machine learning analytical framework to analyze transcriptomic data to identify the most miniature set of differentially expressed genes (DEGs). By analyzing 9 public whole-transcriptome datasets (containing 1184 HCC samples and 672 nontumor controls), we identified 5 critical differentially expressed genes (DEGs) (ie, CCDC107, CXCL12, GIGYF1, GMNN, and IFFO1) between HCC and control samples. The classifiers built on these 5 DEGs reached nearly perfect performance in identification of HCC. The performance of the 5 DEGs was further validated in a US Caucasian cohort that we collected (containing 17 HCC with paired nontumor tissue). The conceptual advance of our work lies in modeling gene-gene interactions and correcting batch effect in the analytic framework. The classifiers built on the 5 DEGs demonstrated clear signature patterns for HCC. The results are interpretable, robust, and reproducible across diverse cohorts/populations with various disease etiologies, indicating the 5 DEGs are intrinsic variables that can describe the overall features of HCC at the genomic level. The analytical framework applied in this study may pave a new way for improving transcriptome profiling analysis of human cancers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cancer Informatics
Cancer Informatics Medicine-Oncology
CiteScore
3.00
自引率
5.00%
发文量
30
审稿时长
8 weeks
期刊介绍: The field of cancer research relies on advances in many other disciplines, including omics technology, mass spectrometry, radio imaging, computer science, and biostatistics. Cancer Informatics provides open access to peer-reviewed high-quality manuscripts reporting bioinformatics analysis of molecular genetics and/or clinical data pertaining to cancer, emphasizing the use of machine learning, artificial intelligence, statistical algorithms, advanced imaging techniques, data visualization, and high-throughput technologies. As the leading journal dedicated exclusively to the report of the use of computational methods in cancer research and practice, Cancer Informatics leverages methodological improvements in systems biology, genomics, proteomics, metabolomics, and molecular biochemistry into the fields of cancer detection, treatment, classification, risk-prediction, prevention, outcome, and modeling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信