Özge Berrak Rencüzoğullari, Selay Tornaci, Yağmur Çelik, Nayat Narot Ciroğlu, Pınar Obakan Yerlikaya, Elif Damla Arisan, Ajda Çoker Gürkan
{"title":"生长激素通过内质网应激和自噬轴对鱼藤酮诱导的凋亡细胞死亡的保护作用。","authors":"Özge Berrak Rencüzoğullari, Selay Tornaci, Yağmur Çelik, Nayat Narot Ciroğlu, Pınar Obakan Yerlikaya, Elif Damla Arisan, Ajda Çoker Gürkan","doi":"10.55730/1300-0152.2639","DOIUrl":null,"url":null,"abstract":"<p><p>Human growth hormone (GH) is crucial modulator of cellular metabolisms, including cell proliferation and organ development, by stimulating insulin-like growth factor-1 (IGF-1), which has various functions such as cell proliferation, tissue growth, survival, or neuroprotection. Therefore, GH is implicated as a critical player in the cell and can enhance neurogenesis and provide neuroprotection during the treatment of neurological diseases such as Parkinson's disease (PD). In this study, the neuroprotective role of GH was investigated in rotenone-induced PD models for the first time. Both SH-SY5Y and SK-N-AS neuroblastoma cells were exposed to rotenone to mimic PD pathogenesis as stated in previous studies. Our data demonstrated that overexpression of GH led to the resistance of the SH-SY5Y and SK-N-AS cell lines to rotenone treatment. The levels of ER stress markers, CHOP, PERK, XBP-1, and ATF6, were higher in wt cells than GH+ SH-SY5Y cells. However, the level of autophagy markers LC3 increased and the levels of reactive oxygen species (ROS) decreased with the overexpression of GH. Furthermore, while rotenone significantly increased the SubG1 population in the cell cycle of SH-SY5Y wt cells, there was a minor alteration in GH+ cell population. Concomitantly, the levels of the proapoptotic marker, cleaved-PARP, and positive staining of Annexin V in SH-SY5Y wt cells were higher after rotenone treatment. Together, these results revealed that overexpression of GH enhanced the autophagy response by triggering the ER stress of SH-SY5Y cells to rotenone exposure and showed a neuroprotective effect in vitro PD models.</p>","PeriodicalId":23375,"journal":{"name":"Turkish journal of biology = Turk biyoloji dergisi","volume":"47 1","pages":"29-43"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10388008/pdf/","citationCount":"0","resultStr":"{\"title\":\"The protective impact of growth hormone against rotenone-induced apoptotic cell death via acting on endoplasmic reticulum stress and autophagy axis.\",\"authors\":\"Özge Berrak Rencüzoğullari, Selay Tornaci, Yağmur Çelik, Nayat Narot Ciroğlu, Pınar Obakan Yerlikaya, Elif Damla Arisan, Ajda Çoker Gürkan\",\"doi\":\"10.55730/1300-0152.2639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human growth hormone (GH) is crucial modulator of cellular metabolisms, including cell proliferation and organ development, by stimulating insulin-like growth factor-1 (IGF-1), which has various functions such as cell proliferation, tissue growth, survival, or neuroprotection. Therefore, GH is implicated as a critical player in the cell and can enhance neurogenesis and provide neuroprotection during the treatment of neurological diseases such as Parkinson's disease (PD). In this study, the neuroprotective role of GH was investigated in rotenone-induced PD models for the first time. Both SH-SY5Y and SK-N-AS neuroblastoma cells were exposed to rotenone to mimic PD pathogenesis as stated in previous studies. Our data demonstrated that overexpression of GH led to the resistance of the SH-SY5Y and SK-N-AS cell lines to rotenone treatment. The levels of ER stress markers, CHOP, PERK, XBP-1, and ATF6, were higher in wt cells than GH+ SH-SY5Y cells. However, the level of autophagy markers LC3 increased and the levels of reactive oxygen species (ROS) decreased with the overexpression of GH. Furthermore, while rotenone significantly increased the SubG1 population in the cell cycle of SH-SY5Y wt cells, there was a minor alteration in GH+ cell population. Concomitantly, the levels of the proapoptotic marker, cleaved-PARP, and positive staining of Annexin V in SH-SY5Y wt cells were higher after rotenone treatment. Together, these results revealed that overexpression of GH enhanced the autophagy response by triggering the ER stress of SH-SY5Y cells to rotenone exposure and showed a neuroprotective effect in vitro PD models.</p>\",\"PeriodicalId\":23375,\"journal\":{\"name\":\"Turkish journal of biology = Turk biyoloji dergisi\",\"volume\":\"47 1\",\"pages\":\"29-43\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10388008/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish journal of biology = Turk biyoloji dergisi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55730/1300-0152.2639\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish journal of biology = Turk biyoloji dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55730/1300-0152.2639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The protective impact of growth hormone against rotenone-induced apoptotic cell death via acting on endoplasmic reticulum stress and autophagy axis.
Human growth hormone (GH) is crucial modulator of cellular metabolisms, including cell proliferation and organ development, by stimulating insulin-like growth factor-1 (IGF-1), which has various functions such as cell proliferation, tissue growth, survival, or neuroprotection. Therefore, GH is implicated as a critical player in the cell and can enhance neurogenesis and provide neuroprotection during the treatment of neurological diseases such as Parkinson's disease (PD). In this study, the neuroprotective role of GH was investigated in rotenone-induced PD models for the first time. Both SH-SY5Y and SK-N-AS neuroblastoma cells were exposed to rotenone to mimic PD pathogenesis as stated in previous studies. Our data demonstrated that overexpression of GH led to the resistance of the SH-SY5Y and SK-N-AS cell lines to rotenone treatment. The levels of ER stress markers, CHOP, PERK, XBP-1, and ATF6, were higher in wt cells than GH+ SH-SY5Y cells. However, the level of autophagy markers LC3 increased and the levels of reactive oxygen species (ROS) decreased with the overexpression of GH. Furthermore, while rotenone significantly increased the SubG1 population in the cell cycle of SH-SY5Y wt cells, there was a minor alteration in GH+ cell population. Concomitantly, the levels of the proapoptotic marker, cleaved-PARP, and positive staining of Annexin V in SH-SY5Y wt cells were higher after rotenone treatment. Together, these results revealed that overexpression of GH enhanced the autophagy response by triggering the ER stress of SH-SY5Y cells to rotenone exposure and showed a neuroprotective effect in vitro PD models.