{"title":"具有小散射体的周期洛伦兹气体。","authors":"Péter Bálint, Henk Bruin, Dalia Terhesiu","doi":"10.1007/s00440-023-01197-6","DOIUrl":null,"url":null,"abstract":"<p><p>We prove limit laws for infinite horizon planar periodic Lorentz gases when, as time <i>n</i> tends to infinity, the scatterer size <math><mi>ρ</mi></math> may also tend to zero simultaneously at a sufficiently slow pace. In particular we obtain a non-standard Central Limit Theorem as well as a Local Limit Theorem for the displacement function. To the best of our knowledge, these are the first results on an intermediate case between the two well-studied regimes with superdiffusive <math><msqrt><mrow><mi>n</mi><mo>log</mo><mi>n</mi></mrow></msqrt></math> scaling (i) for fixed infinite horizon configurations-letting first <math><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></math> and then <math><mrow><mi>ρ</mi><mo>→</mo><mn>0</mn></mrow></math>-studied e.g. by Szász and Varjú (J Stat Phys 129(1):59-80, 2007) and (ii) Boltzmann-Grad type situations-letting first <math><mrow><mi>ρ</mi><mo>→</mo><mn>0</mn></mrow></math> and then <math><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></math>-studied by Marklof and Tóth (Commun Math Phys 347(3):933-981, 2016) .</p>","PeriodicalId":20527,"journal":{"name":"Probability Theory and Related Fields","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10169905/pdf/","citationCount":"0","resultStr":"{\"title\":\"Periodic Lorentz gas with small scatterers.\",\"authors\":\"Péter Bálint, Henk Bruin, Dalia Terhesiu\",\"doi\":\"10.1007/s00440-023-01197-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We prove limit laws for infinite horizon planar periodic Lorentz gases when, as time <i>n</i> tends to infinity, the scatterer size <math><mi>ρ</mi></math> may also tend to zero simultaneously at a sufficiently slow pace. In particular we obtain a non-standard Central Limit Theorem as well as a Local Limit Theorem for the displacement function. To the best of our knowledge, these are the first results on an intermediate case between the two well-studied regimes with superdiffusive <math><msqrt><mrow><mi>n</mi><mo>log</mo><mi>n</mi></mrow></msqrt></math> scaling (i) for fixed infinite horizon configurations-letting first <math><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></math> and then <math><mrow><mi>ρ</mi><mo>→</mo><mn>0</mn></mrow></math>-studied e.g. by Szász and Varjú (J Stat Phys 129(1):59-80, 2007) and (ii) Boltzmann-Grad type situations-letting first <math><mrow><mi>ρ</mi><mo>→</mo><mn>0</mn></mrow></math> and then <math><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></math>-studied by Marklof and Tóth (Commun Math Phys 347(3):933-981, 2016) .</p>\",\"PeriodicalId\":20527,\"journal\":{\"name\":\"Probability Theory and Related Fields\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10169905/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability Theory and Related Fields\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00440-023-01197-6\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/3/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Theory and Related Fields","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00440-023-01197-6","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
摘要
我们证明了无限视界平面周期洛伦兹气体的极限律,当时间n趋于无穷大时,散射体大小ρ也可能以足够慢的速度同时趋于零。特别地,我们得到了位移函数的一个非标准中心极限定理和一个局部极限定理。据我们所知,这是关于两个研究良好的超扩散nlogn标度(i)的固定无限视界配置的中间情况的第一个结果,其中第一个n→∞ 然后ρ→0-例如由SzáSz和Varjú研究(J Stat Phys 129(1):59-802007)和(ii)Boltzmann Grad型情形→0然后n→∞-Marklof和Tóth研究(Commun Math Phys 347(3):933-9812016)。
We prove limit laws for infinite horizon planar periodic Lorentz gases when, as time n tends to infinity, the scatterer size may also tend to zero simultaneously at a sufficiently slow pace. In particular we obtain a non-standard Central Limit Theorem as well as a Local Limit Theorem for the displacement function. To the best of our knowledge, these are the first results on an intermediate case between the two well-studied regimes with superdiffusive scaling (i) for fixed infinite horizon configurations-letting first and then -studied e.g. by Szász and Varjú (J Stat Phys 129(1):59-80, 2007) and (ii) Boltzmann-Grad type situations-letting first and then -studied by Marklof and Tóth (Commun Math Phys 347(3):933-981, 2016) .
期刊介绍:
Probability Theory and Related Fields publishes research papers in modern probability theory and its various fields of application. Thus, subjects of interest include: mathematical statistical physics, mathematical statistics, mathematical biology, theoretical computer science, and applications of probability theory to other areas of mathematics such as combinatorics, analysis, ergodic theory and geometry. Survey papers on emerging areas of importance may be considered for publication. The main languages of publication are English, French and German.