RSim:一种通过秩相似性的基于参考的归一化方法。

IF 4.3 2区 生物学
Bo Yuan, Shulei Wang
{"title":"RSim:一种通过秩相似性的基于参考的归一化方法。","authors":"Bo Yuan,&nbsp;Shulei Wang","doi":"10.1371/journal.pcbi.1011447","DOIUrl":null,"url":null,"abstract":"<p><p>Microbiome sequencing data normalization is crucial for eliminating technical bias and ensuring accurate downstream analysis. However, this process can be challenging due to the high frequency of zero counts in microbiome data. We propose a novel reference-based normalization method called normalization via rank similarity (RSim) that corrects sample-specific biases, even in the presence of many zero counts. Unlike other normalization methods, RSim does not require additional assumptions or treatments for the high prevalence of zero counts. This makes it robust and minimizes potential bias resulting from procedures that address zero counts, such as pseudo-counts. Our numerical experiments demonstrate that RSim reduces false discoveries, improves detection power, and reveals true biological signals in downstream tasks such as PCoA plotting, association analysis, and differential abundance analysis.</p>","PeriodicalId":49688,"journal":{"name":"PLoS Computational Biology","volume":"19 9","pages":"e1011447"},"PeriodicalIF":4.3000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10501661/pdf/","citationCount":"0","resultStr":"{\"title\":\"RSim: A reference-based normalization method via rank similarity.\",\"authors\":\"Bo Yuan,&nbsp;Shulei Wang\",\"doi\":\"10.1371/journal.pcbi.1011447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microbiome sequencing data normalization is crucial for eliminating technical bias and ensuring accurate downstream analysis. However, this process can be challenging due to the high frequency of zero counts in microbiome data. We propose a novel reference-based normalization method called normalization via rank similarity (RSim) that corrects sample-specific biases, even in the presence of many zero counts. Unlike other normalization methods, RSim does not require additional assumptions or treatments for the high prevalence of zero counts. This makes it robust and minimizes potential bias resulting from procedures that address zero counts, such as pseudo-counts. Our numerical experiments demonstrate that RSim reduces false discoveries, improves detection power, and reveals true biological signals in downstream tasks such as PCoA plotting, association analysis, and differential abundance analysis.</p>\",\"PeriodicalId\":49688,\"journal\":{\"name\":\"PLoS Computational Biology\",\"volume\":\"19 9\",\"pages\":\"e1011447\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10501661/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pcbi.1011447\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1011447","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

微生物组测序数据标准化对于消除技术偏差和确保准确的下游分析至关重要。然而,由于微生物组数据中零计数的频率很高,这一过程可能具有挑战性。我们提出了一种新的基于参考的归一化方法,称为通过秩相似性归一化(RSim),即使在存在许多零计数的情况下,也可以校正样本特定的偏差。与其他标准化方法不同,RSim不需要对零计数的高流行率进行额外的假设或治疗。这使得它具有鲁棒性,并最大限度地减少了处理零计数(如伪计数)的过程所产生的潜在偏差。我们的数值实验表明,RSim在PCoA绘图、关联分析和差异丰度分析等下游任务中减少了错误发现,提高了检测能力,并揭示了真实的生物信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

RSim: A reference-based normalization method via rank similarity.

RSim: A reference-based normalization method via rank similarity.

RSim: A reference-based normalization method via rank similarity.

RSim: A reference-based normalization method via rank similarity.

Microbiome sequencing data normalization is crucial for eliminating technical bias and ensuring accurate downstream analysis. However, this process can be challenging due to the high frequency of zero counts in microbiome data. We propose a novel reference-based normalization method called normalization via rank similarity (RSim) that corrects sample-specific biases, even in the presence of many zero counts. Unlike other normalization methods, RSim does not require additional assumptions or treatments for the high prevalence of zero counts. This makes it robust and minimizes potential bias resulting from procedures that address zero counts, such as pseudo-counts. Our numerical experiments demonstrate that RSim reduces false discoveries, improves detection power, and reveals true biological signals in downstream tasks such as PCoA plotting, association analysis, and differential abundance analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS Computational Biology
PLoS Computational Biology 生物-生化研究方法
CiteScore
7.10
自引率
4.70%
发文量
820
期刊介绍: PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery. Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines. Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights. Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology. Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信