{"title":"粗略随机波动模型对长期人寿保险定价的影响。","authors":"Jean-Loup Dupret, Jérôme Barbarin, Donatien Hainaut","doi":"10.1007/s13385-022-00317-1","DOIUrl":null,"url":null,"abstract":"<p><p>The Rough Fractional Stochastic Volatility (RFSV) model of Gatheral et al. (Quant Financ 18(6):933-949, 2014) is remarkably consistent with financial time series of past volatility data as well as with the observed implied volatility surface. Two tractable implementations are derived from the RFSV with the rBergomi model of Bayer et al. (Quant Financ 16(6):887-904, 2016) and the rough Heston model of El Euch et al. (Risk 84-89, 2019). We now show practically how to expand these two rough volatility models at larger time scales, we analyze their implications for the pricing of long-term life insurance contracts and we explain why they provide a more accurate fair value of such long-term contacts. In particular, we highlight and study the long-term properties of these two rough volatility models and compare them with standard stochastic volatility models such as the Heston and Bates models. For the rough Heston, we manage to build a highly consistent calibration and pricing methodology based on a stable regime for the volatility at large maturity. This ensures a reasonable behavior of the model in the long run. Concerning the rBergomi, we show that this model does not exhibit a realistic long-term volatility with extremely large swings at large time scales. We also show that this rBergomi is not fast enough for calibration purposes, unlike the rough Heston which is highly tractable. Compared to standard stochastic volatility models, the rough Heston hence provides efficiently a more accurate fair value of long-term life insurance contracts embedding path-dependent options while being highly consistent with historical and risk-neutral data.</p>","PeriodicalId":44305,"journal":{"name":"European Actuarial Journal","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9243767/pdf/","citationCount":"0","resultStr":"{\"title\":\"Impact of rough stochastic volatility models on long-term life insurance pricing.\",\"authors\":\"Jean-Loup Dupret, Jérôme Barbarin, Donatien Hainaut\",\"doi\":\"10.1007/s13385-022-00317-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Rough Fractional Stochastic Volatility (RFSV) model of Gatheral et al. (Quant Financ 18(6):933-949, 2014) is remarkably consistent with financial time series of past volatility data as well as with the observed implied volatility surface. Two tractable implementations are derived from the RFSV with the rBergomi model of Bayer et al. (Quant Financ 16(6):887-904, 2016) and the rough Heston model of El Euch et al. (Risk 84-89, 2019). We now show practically how to expand these two rough volatility models at larger time scales, we analyze their implications for the pricing of long-term life insurance contracts and we explain why they provide a more accurate fair value of such long-term contacts. In particular, we highlight and study the long-term properties of these two rough volatility models and compare them with standard stochastic volatility models such as the Heston and Bates models. For the rough Heston, we manage to build a highly consistent calibration and pricing methodology based on a stable regime for the volatility at large maturity. This ensures a reasonable behavior of the model in the long run. Concerning the rBergomi, we show that this model does not exhibit a realistic long-term volatility with extremely large swings at large time scales. We also show that this rBergomi is not fast enough for calibration purposes, unlike the rough Heston which is highly tractable. Compared to standard stochastic volatility models, the rough Heston hence provides efficiently a more accurate fair value of long-term life insurance contracts embedding path-dependent options while being highly consistent with historical and risk-neutral data.</p>\",\"PeriodicalId\":44305,\"journal\":{\"name\":\"European Actuarial Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9243767/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Actuarial Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13385-022-00317-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/6/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Actuarial Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13385-022-00317-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/25 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Impact of rough stochastic volatility models on long-term life insurance pricing.
The Rough Fractional Stochastic Volatility (RFSV) model of Gatheral et al. (Quant Financ 18(6):933-949, 2014) is remarkably consistent with financial time series of past volatility data as well as with the observed implied volatility surface. Two tractable implementations are derived from the RFSV with the rBergomi model of Bayer et al. (Quant Financ 16(6):887-904, 2016) and the rough Heston model of El Euch et al. (Risk 84-89, 2019). We now show practically how to expand these two rough volatility models at larger time scales, we analyze their implications for the pricing of long-term life insurance contracts and we explain why they provide a more accurate fair value of such long-term contacts. In particular, we highlight and study the long-term properties of these two rough volatility models and compare them with standard stochastic volatility models such as the Heston and Bates models. For the rough Heston, we manage to build a highly consistent calibration and pricing methodology based on a stable regime for the volatility at large maturity. This ensures a reasonable behavior of the model in the long run. Concerning the rBergomi, we show that this model does not exhibit a realistic long-term volatility with extremely large swings at large time scales. We also show that this rBergomi is not fast enough for calibration purposes, unlike the rough Heston which is highly tractable. Compared to standard stochastic volatility models, the rough Heston hence provides efficiently a more accurate fair value of long-term life insurance contracts embedding path-dependent options while being highly consistent with historical and risk-neutral data.
期刊介绍:
Actuarial science and actuarial finance deal with the study, modeling and managing of insurance and related financial risks for which stochastic models and statistical methods are available. Topics include classical actuarial mathematics such as life and non-life insurance, pension funds, reinsurance, and also more recent areas of interest such as risk management, asset-and-liability management, solvency, catastrophe modeling, systematic changes in risk parameters, longevity, etc. EAJ is designed for the promotion and development of actuarial science and actuarial finance. For this, we publish original actuarial research papers, either theoretical or applied, with innovative applications, as well as case studies on the evaluation and implementation of new mathematical methods in insurance and actuarial finance. We also welcome survey papers on topics of recent interest in the field. EAJ is the successor of six national actuarial journals, and particularly focuses on links between actuarial theory and practice. In order to serve as a platform for this exchange, we also welcome discussions (typically from practitioners, with a length of 1-3 pages) on published papers that highlight the application aspects of the discussed paper. Such discussions can also suggest modifications of the studied problem which are of particular interest to actuarial practice. Thus, they can serve as motivation for further studies.Finally, EAJ now also publishes ‘Letters’, which are short papers (up to 5 pages) that have academic and/or practical relevance and consist of e.g. an interesting idea, insight, clarification or observation of a cross-connection that deserves publication, but is shorter than a usual research article. A detailed description or proposition of a new relevant research question, short but curious mathematical results that deserve the attention of the actuarial community as well as novel applications of mathematical and actuarial concepts are equally welcome. Letter submissions will be reviewed within 6 weeks, so that they provide an opportunity to get good and pertinent ideas published quickly, while the same refereeing standards as for other submissions apply. Both academics and practitioners are encouraged to contribute to this new format. Authors are invited to submit their papers online via http://euaj.edmgr.com.