{"title":"利用染色体微阵列分析鉴定中国儿童患者中一个新的分离的4q35.2微缺失:病例报告和文献综述","authors":"Jianlong Zhuang, Shufen Liu, Xinying Chen, Yuying Jiang, Chunnuan Chen","doi":"10.1186/s13039-023-00651-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Isolated terminal 4q35.2 microdeletion is an extremely rare copy number variant affecting people all over the world. To date, researchers still have controversial opinions and results on its pathogenicity. Here, we aim to present a Chinese pediatric patient with terminal 4q35.2 microdeletion and use this case to clarify the underlying genotype-phenotype correlation.</p><p><strong>Methods: </strong>A 17-year-old boy from Quanzhou, South China, was recruited as the main subject in this study. Karyotype and single-nucleotide polymorphism (SNP) based microarray analysis were carried out to detect chromosomal abnormalities and copy number variants in this family. Trio whole exome sequencing (Trio-WES) was performed to investigate the potential pathogenic variant in this family.</p><p><strong>Results: </strong>During observation, we identified abnormal clinical phenotypes including upper eyelid ptosis, motor developmental delay, abnormal posturing, abnormality of coordination, attention deficit hyperactivity disorder, and involuntary movements in the patient. SNP array analysis results confirmed a case of 2.0 Mb 4q35.2 microdeletion and parental SNP array verification results indicated that the terminal 4q35.2 microdeletion was inherited from his mother. No copy number variants were detected in his father. In addition, the trio-WES results demonstrated none of pathogenic or likely pathogenic variants in the patient.</p><p><strong>Conclusions: </strong>This study brings a novel analysis of a case of 2.0 Mb terminal 4q35.2 microdeletion affecting a Chinese individual. In addition, additional clinical symptoms such as upper eyelid ptosis and involuntary movements were first reported to affect a patient with terminal 4q35.2 microdeletion, which may broaden the phenotype spectrum of the condition.</p>","PeriodicalId":19099,"journal":{"name":"Molecular Cytogenetics","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10399047/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identification of a novel isolated 4q35.2 microdeletion in a Chinese pediatric patient using chromosomal microarray analysis: a case report and literature review.\",\"authors\":\"Jianlong Zhuang, Shufen Liu, Xinying Chen, Yuying Jiang, Chunnuan Chen\",\"doi\":\"10.1186/s13039-023-00651-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Isolated terminal 4q35.2 microdeletion is an extremely rare copy number variant affecting people all over the world. To date, researchers still have controversial opinions and results on its pathogenicity. Here, we aim to present a Chinese pediatric patient with terminal 4q35.2 microdeletion and use this case to clarify the underlying genotype-phenotype correlation.</p><p><strong>Methods: </strong>A 17-year-old boy from Quanzhou, South China, was recruited as the main subject in this study. Karyotype and single-nucleotide polymorphism (SNP) based microarray analysis were carried out to detect chromosomal abnormalities and copy number variants in this family. Trio whole exome sequencing (Trio-WES) was performed to investigate the potential pathogenic variant in this family.</p><p><strong>Results: </strong>During observation, we identified abnormal clinical phenotypes including upper eyelid ptosis, motor developmental delay, abnormal posturing, abnormality of coordination, attention deficit hyperactivity disorder, and involuntary movements in the patient. SNP array analysis results confirmed a case of 2.0 Mb 4q35.2 microdeletion and parental SNP array verification results indicated that the terminal 4q35.2 microdeletion was inherited from his mother. No copy number variants were detected in his father. In addition, the trio-WES results demonstrated none of pathogenic or likely pathogenic variants in the patient.</p><p><strong>Conclusions: </strong>This study brings a novel analysis of a case of 2.0 Mb terminal 4q35.2 microdeletion affecting a Chinese individual. In addition, additional clinical symptoms such as upper eyelid ptosis and involuntary movements were first reported to affect a patient with terminal 4q35.2 microdeletion, which may broaden the phenotype spectrum of the condition.</p>\",\"PeriodicalId\":19099,\"journal\":{\"name\":\"Molecular Cytogenetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10399047/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Cytogenetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13039-023-00651-3\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cytogenetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13039-023-00651-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Identification of a novel isolated 4q35.2 microdeletion in a Chinese pediatric patient using chromosomal microarray analysis: a case report and literature review.
Background: Isolated terminal 4q35.2 microdeletion is an extremely rare copy number variant affecting people all over the world. To date, researchers still have controversial opinions and results on its pathogenicity. Here, we aim to present a Chinese pediatric patient with terminal 4q35.2 microdeletion and use this case to clarify the underlying genotype-phenotype correlation.
Methods: A 17-year-old boy from Quanzhou, South China, was recruited as the main subject in this study. Karyotype and single-nucleotide polymorphism (SNP) based microarray analysis were carried out to detect chromosomal abnormalities and copy number variants in this family. Trio whole exome sequencing (Trio-WES) was performed to investigate the potential pathogenic variant in this family.
Results: During observation, we identified abnormal clinical phenotypes including upper eyelid ptosis, motor developmental delay, abnormal posturing, abnormality of coordination, attention deficit hyperactivity disorder, and involuntary movements in the patient. SNP array analysis results confirmed a case of 2.0 Mb 4q35.2 microdeletion and parental SNP array verification results indicated that the terminal 4q35.2 microdeletion was inherited from his mother. No copy number variants were detected in his father. In addition, the trio-WES results demonstrated none of pathogenic or likely pathogenic variants in the patient.
Conclusions: This study brings a novel analysis of a case of 2.0 Mb terminal 4q35.2 microdeletion affecting a Chinese individual. In addition, additional clinical symptoms such as upper eyelid ptosis and involuntary movements were first reported to affect a patient with terminal 4q35.2 microdeletion, which may broaden the phenotype spectrum of the condition.
期刊介绍:
Molecular Cytogenetics encompasses all aspects of chromosome biology and the application of molecular cytogenetic techniques in all areas of biology and medicine, including structural and functional organization of the chromosome and nucleus, genome variation, expression and evolution, chromosome abnormalities and genomic variations in medical genetics and tumor genetics.
Molecular Cytogenetics primarily defines a large set of the techniques that operate either with the entire genome or with specific targeted DNA sequences. Topical areas include, but are not limited to:
-Structural and functional organization of chromosome and nucleus-
Genome variation, expression and evolution-
Animal and plant molecular cytogenetics and genomics-
Chromosome abnormalities and genomic variations in clinical genetics-
Applications in preimplantation, pre- and post-natal diagnosis-
Applications in the central nervous system, cancer and haematology research-
Previously unreported applications of molecular cytogenetic techniques-
Development of new techniques or significant enhancements to established techniques.
This journal is a source for numerous scientists all over the world, who wish to improve or introduce molecular cytogenetic techniques into their practice.