Maria Waldl, Thomas Spicher, Ronny Lorenz, Irene K Beckmann, Ivo L Hofacker, Sarah Von Löhneysen, Peter F Stadler
{"title":"对局部RNA折叠进行了重新研究。","authors":"Maria Waldl, Thomas Spicher, Ronny Lorenz, Irene K Beckmann, Ivo L Hofacker, Sarah Von Löhneysen, Peter F Stadler","doi":"10.1142/S0219720023500166","DOIUrl":null,"url":null,"abstract":"<p><p>Most of the functional RNA elements located within large transcripts are local. Local folding therefore serves a practically useful approximation to global structure prediction. Due to the sensitivity of RNA secondary structure prediction to the exact definition of sequence ends, accuracy can be increased by averaging local structure predictions over multiple, overlapping sequence windows. These averages can be computed efficiently by dynamic programming. Here we revisit the local folding problem, present a concise mathematical formalization that generalizes previous approaches and show that correct Boltzmann samples can be obtained by local stochastic backtracing in McCaskill's algorithms but not from local folding recursions. Corresponding new features are implemented in the ViennaRNA package to improve the support of local folding. Applications include the computation of maximum expected accuracy structures from RNAplfold data and a mutual information measure to quantify the sensitivity of individual sequence positions.</p>","PeriodicalId":48910,"journal":{"name":"Journal of Bioinformatics and Computational Biology","volume":"21 4","pages":"2350016"},"PeriodicalIF":0.9000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local RNA folding revisited.\",\"authors\":\"Maria Waldl, Thomas Spicher, Ronny Lorenz, Irene K Beckmann, Ivo L Hofacker, Sarah Von Löhneysen, Peter F Stadler\",\"doi\":\"10.1142/S0219720023500166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Most of the functional RNA elements located within large transcripts are local. Local folding therefore serves a practically useful approximation to global structure prediction. Due to the sensitivity of RNA secondary structure prediction to the exact definition of sequence ends, accuracy can be increased by averaging local structure predictions over multiple, overlapping sequence windows. These averages can be computed efficiently by dynamic programming. Here we revisit the local folding problem, present a concise mathematical formalization that generalizes previous approaches and show that correct Boltzmann samples can be obtained by local stochastic backtracing in McCaskill's algorithms but not from local folding recursions. Corresponding new features are implemented in the ViennaRNA package to improve the support of local folding. Applications include the computation of maximum expected accuracy structures from RNAplfold data and a mutual information measure to quantify the sensitivity of individual sequence positions.</p>\",\"PeriodicalId\":48910,\"journal\":{\"name\":\"Journal of Bioinformatics and Computational Biology\",\"volume\":\"21 4\",\"pages\":\"2350016\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bioinformatics and Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1142/S0219720023500166\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioinformatics and Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/S0219720023500166","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/28 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Most of the functional RNA elements located within large transcripts are local. Local folding therefore serves a practically useful approximation to global structure prediction. Due to the sensitivity of RNA secondary structure prediction to the exact definition of sequence ends, accuracy can be increased by averaging local structure predictions over multiple, overlapping sequence windows. These averages can be computed efficiently by dynamic programming. Here we revisit the local folding problem, present a concise mathematical formalization that generalizes previous approaches and show that correct Boltzmann samples can be obtained by local stochastic backtracing in McCaskill's algorithms but not from local folding recursions. Corresponding new features are implemented in the ViennaRNA package to improve the support of local folding. Applications include the computation of maximum expected accuracy structures from RNAplfold data and a mutual information measure to quantify the sensitivity of individual sequence positions.
期刊介绍:
The Journal of Bioinformatics and Computational Biology aims to publish high quality, original research articles, expository tutorial papers and review papers as well as short, critical comments on technical issues associated with the analysis of cellular information.
The research papers will be technical presentations of new assertions, discoveries and tools, intended for a narrower specialist community. The tutorials, reviews and critical commentary will be targeted at a broader readership of biologists who are interested in using computers but are not knowledgeable about scientific computing, and equally, computer scientists who have an interest in biology but are not familiar with current thrusts nor the language of biology. Such carefully chosen tutorials and articles should greatly accelerate the rate of entry of these new creative scientists into the field.