急性淋巴细胞白血病儿童TPMT和NUDT15药物遗传变异的综合表征。

IF 1.7 3区 医学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Takaya Moriyama, Wenjian Yang, Colton Smith, Ching-Hon Pui, William E Evans, Mary V Relling, Smita Bhatia, Jun J Yang
{"title":"急性淋巴细胞白血病儿童TPMT和NUDT15药物遗传变异的综合表征。","authors":"Takaya Moriyama,&nbsp;Wenjian Yang,&nbsp;Colton Smith,&nbsp;Ching-Hon Pui,&nbsp;William E Evans,&nbsp;Mary V Relling,&nbsp;Smita Bhatia,&nbsp;Jun J Yang","doi":"10.1097/FPC.0000000000000453","DOIUrl":null,"url":null,"abstract":"<p><p>Thiopurines [e.g. 6-mercaptopurine (6MP)] are essential for the cure of acute lymphoblastic leukemia (ALL) but can cause dose-limiting hematopoietic toxicity. Germline variants in drug-metabolizing enzyme genes TPMT and NUDT15 have been linked to the risk of thiopurine toxicity. However, the full spectrum of genetic polymorphism in these genes and their impact on the pharmacological effects of thiopurines remain unclear. Herein, we comprehensively sequenced the TPMT and NUDT15 genes in 685 children with ALL from the Children's Oncology Group AALL03N1 trial and evaluated their association with 6MP dose intensity. We identified 6 and 5 coding variants in TPMT and NUDT15 respectively, confirming the association at known pharmacogenetic variants. Importantly, we discovered a novel gain-of-function noncoding variants in TPMT associated with increased 6MP tolerance (rs12199316), with independent validation in 380 patients from the St. Jude Total Therapy XV protocol. Located adjacent to a regulatory DNA element, this intergenic variant was strongly associated TPMT transcription, with the variant allele linked to higher expression (P = 2.6 × 10-9). For NUDT15, one noncoding common variant, rs73189762, was identified as potentially related to 6MP intolerance. Collectively, we described pharmacogenetic variants in TPMT and NUDT15 associated with thiopurine sensitivity, providing further insights for implementing pharmacogenetics-based thiopurine individualization.</p>","PeriodicalId":19763,"journal":{"name":"Pharmacogenetics and genomics","volume":"32 2","pages":"60-66"},"PeriodicalIF":1.7000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8702453/pdf/nihms-1726174.pdf","citationCount":"7","resultStr":"{\"title\":\"Comprehensive characterization of pharmacogenetic variants in TPMT and NUDT15 in children with acute lymphoblastic leukemia.\",\"authors\":\"Takaya Moriyama,&nbsp;Wenjian Yang,&nbsp;Colton Smith,&nbsp;Ching-Hon Pui,&nbsp;William E Evans,&nbsp;Mary V Relling,&nbsp;Smita Bhatia,&nbsp;Jun J Yang\",\"doi\":\"10.1097/FPC.0000000000000453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Thiopurines [e.g. 6-mercaptopurine (6MP)] are essential for the cure of acute lymphoblastic leukemia (ALL) but can cause dose-limiting hematopoietic toxicity. Germline variants in drug-metabolizing enzyme genes TPMT and NUDT15 have been linked to the risk of thiopurine toxicity. However, the full spectrum of genetic polymorphism in these genes and their impact on the pharmacological effects of thiopurines remain unclear. Herein, we comprehensively sequenced the TPMT and NUDT15 genes in 685 children with ALL from the Children's Oncology Group AALL03N1 trial and evaluated their association with 6MP dose intensity. We identified 6 and 5 coding variants in TPMT and NUDT15 respectively, confirming the association at known pharmacogenetic variants. Importantly, we discovered a novel gain-of-function noncoding variants in TPMT associated with increased 6MP tolerance (rs12199316), with independent validation in 380 patients from the St. Jude Total Therapy XV protocol. Located adjacent to a regulatory DNA element, this intergenic variant was strongly associated TPMT transcription, with the variant allele linked to higher expression (P = 2.6 × 10-9). For NUDT15, one noncoding common variant, rs73189762, was identified as potentially related to 6MP intolerance. Collectively, we described pharmacogenetic variants in TPMT and NUDT15 associated with thiopurine sensitivity, providing further insights for implementing pharmacogenetics-based thiopurine individualization.</p>\",\"PeriodicalId\":19763,\"journal\":{\"name\":\"Pharmacogenetics and genomics\",\"volume\":\"32 2\",\"pages\":\"60-66\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8702453/pdf/nihms-1726174.pdf\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmacogenetics and genomics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/FPC.0000000000000453\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacogenetics and genomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/FPC.0000000000000453","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 7

摘要

硫嘌呤[如6-巯基嘌呤(6MP)]对治疗急性淋巴细胞白血病(ALL)至关重要,但可引起剂量限制性造血毒性。药物代谢酶基因TPMT和NUDT15的种系变异与硫嘌呤毒性的风险有关。然而,这些基因的全谱遗传多态性及其对硫嘌呤药理作用的影响尚不清楚。在此,我们对来自儿童肿瘤组AALL03N1试验的685例ALL患儿的TPMT和NUDT15基因进行了全面测序,并评估了它们与6MP剂量强度的关系。我们分别在TPMT和NUDT15中发现了6个和5个编码变异,证实了已知药物遗传变异的相关性。重要的是,我们在TPMT中发现了一种新的功能获得性非编码变异,与6MP耐受性增加相关(rs12199316),并在St. Jude Total Therapy XV方案的380例患者中进行了独立验证。该基因间变异位于一个调控DNA元件附近,与TPMT转录密切相关,变异等位基因与更高的表达相关(P = 2.6 × 10-9)。对于NUDT15,一个非编码的常见变体rs73189762被确定为可能与6MP不耐受相关。总的来说,我们描述了与硫嘌呤敏感性相关的TPMT和NUDT15的药物遗传变异,为实现基于药物遗传学的硫嘌呤个体化提供了进一步的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comprehensive characterization of pharmacogenetic variants in TPMT and NUDT15 in children with acute lymphoblastic leukemia.

Thiopurines [e.g. 6-mercaptopurine (6MP)] are essential for the cure of acute lymphoblastic leukemia (ALL) but can cause dose-limiting hematopoietic toxicity. Germline variants in drug-metabolizing enzyme genes TPMT and NUDT15 have been linked to the risk of thiopurine toxicity. However, the full spectrum of genetic polymorphism in these genes and their impact on the pharmacological effects of thiopurines remain unclear. Herein, we comprehensively sequenced the TPMT and NUDT15 genes in 685 children with ALL from the Children's Oncology Group AALL03N1 trial and evaluated their association with 6MP dose intensity. We identified 6 and 5 coding variants in TPMT and NUDT15 respectively, confirming the association at known pharmacogenetic variants. Importantly, we discovered a novel gain-of-function noncoding variants in TPMT associated with increased 6MP tolerance (rs12199316), with independent validation in 380 patients from the St. Jude Total Therapy XV protocol. Located adjacent to a regulatory DNA element, this intergenic variant was strongly associated TPMT transcription, with the variant allele linked to higher expression (P = 2.6 × 10-9). For NUDT15, one noncoding common variant, rs73189762, was identified as potentially related to 6MP intolerance. Collectively, we described pharmacogenetic variants in TPMT and NUDT15 associated with thiopurine sensitivity, providing further insights for implementing pharmacogenetics-based thiopurine individualization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pharmacogenetics and genomics
Pharmacogenetics and genomics 医学-生物工程与应用微生物
CiteScore
3.20
自引率
3.80%
发文量
47
审稿时长
3 months
期刊介绍: ​​​​Pharmacogenetics and Genomics is devoted to the rapid publication of research papers, brief review articles and short communications on genetic determinants in response to drugs and other chemicals in humans and animals. The Journal brings together papers from the entire spectrum of biomedical research and science, including biochemistry, bioinformatics, clinical pharmacology, clinical pharmacy, epidemiology, genetics, genomics, molecular biology, pharmacology, pharmaceutical sciences, and toxicology. Under a single cover, the Journal provides a forum for all aspects of the genetics and genomics of host response to exogenous chemicals: from the gene to the clinic.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信