昼夜节律基因中的单核苷酸多态性:对基因功能和表型的影响。

3区 生物学 Q1 Biochemistry, Genetics and Molecular Biology
Ibrahim Baris, Onur Ozcan, Ibrahim Halil Kavakli
{"title":"昼夜节律基因中的单核苷酸多态性:对基因功能和表型的影响。","authors":"Ibrahim Baris,&nbsp;Onur Ozcan,&nbsp;Ibrahim Halil Kavakli","doi":"10.1016/bs.apcsb.2023.03.002","DOIUrl":null,"url":null,"abstract":"<p><p>Circadian rhythm is an endogenous timing system that allows an organism to anticipate and adapt to daily changes and regulate various physiological variables such as the sleep-wake cycle. This rhythm is governed by a molecular circadian clock mechanism, generated by a transcriptional and translational feedback loop (TTFL) mechanism. In mammals, TTFL is determined by the interaction of four main clock proteins: BMAL1, CLOCK, Cryptochromes (CRY), and Periods (PER). BMAL1 and CLOCK form dimers and initiate the transcription of clock-controlled genes (CCG) by binding an E-box element with the promotor genes. Among CCGs, PERs and CRYs accumulate in the cytosol and translocate into the nucleus, where they interact with the BMAL1/CLOCK dimer and inhibit its activity. Several epidemiological and genetic studies have revealed that circadian rhythm disruption causes various types of disease. In this chapter, we summarize the effect of core clock gene SNPs on circadian rhythm and diseases in humans.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":"137 ","pages":"17-37"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Single nucleotide polymorphisms (SNPs) in circadian genes: Impact on gene function and phenotype.\",\"authors\":\"Ibrahim Baris,&nbsp;Onur Ozcan,&nbsp;Ibrahim Halil Kavakli\",\"doi\":\"10.1016/bs.apcsb.2023.03.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Circadian rhythm is an endogenous timing system that allows an organism to anticipate and adapt to daily changes and regulate various physiological variables such as the sleep-wake cycle. This rhythm is governed by a molecular circadian clock mechanism, generated by a transcriptional and translational feedback loop (TTFL) mechanism. In mammals, TTFL is determined by the interaction of four main clock proteins: BMAL1, CLOCK, Cryptochromes (CRY), and Periods (PER). BMAL1 and CLOCK form dimers and initiate the transcription of clock-controlled genes (CCG) by binding an E-box element with the promotor genes. Among CCGs, PERs and CRYs accumulate in the cytosol and translocate into the nucleus, where they interact with the BMAL1/CLOCK dimer and inhibit its activity. Several epidemiological and genetic studies have revealed that circadian rhythm disruption causes various types of disease. In this chapter, we summarize the effect of core clock gene SNPs on circadian rhythm and diseases in humans.</p>\",\"PeriodicalId\":7376,\"journal\":{\"name\":\"Advances in protein chemistry and structural biology\",\"volume\":\"137 \",\"pages\":\"17-37\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in protein chemistry and structural biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.apcsb.2023.03.002\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/3/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in protein chemistry and structural biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.apcsb.2023.03.002","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 7

摘要

昼夜节律是一种内源性时间系统,使生物体能够预测和适应日常变化,并调节各种生理变量,如睡眠-觉醒周期。这种节律由分子昼夜节律时钟机制控制,该机制由转录和翻译反馈环(TTFL)机制产生。在哺乳动物中,TTFL由四种主要时钟蛋白的相互作用决定:BMAL1、clock、隐色素(CRY)和周期(PER)。BMAL1和CLOCK形成二聚体,并通过将E-盒元件与启动子基因结合来启动时钟控制基因(CCG)的转录。在CCG中,PER和CRY在胞质溶胶中积累并转移到细胞核中,在那里它们与BMAL1/CLOCK二聚体相互作用并抑制其活性。几项流行病学和遗传学研究表明,昼夜节律紊乱会导致各种类型的疾病。在本章中,我们总结了核心时钟基因SNPs对人类昼夜节律和疾病的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Single nucleotide polymorphisms (SNPs) in circadian genes: Impact on gene function and phenotype.

Circadian rhythm is an endogenous timing system that allows an organism to anticipate and adapt to daily changes and regulate various physiological variables such as the sleep-wake cycle. This rhythm is governed by a molecular circadian clock mechanism, generated by a transcriptional and translational feedback loop (TTFL) mechanism. In mammals, TTFL is determined by the interaction of four main clock proteins: BMAL1, CLOCK, Cryptochromes (CRY), and Periods (PER). BMAL1 and CLOCK form dimers and initiate the transcription of clock-controlled genes (CCG) by binding an E-box element with the promotor genes. Among CCGs, PERs and CRYs accumulate in the cytosol and translocate into the nucleus, where they interact with the BMAL1/CLOCK dimer and inhibit its activity. Several epidemiological and genetic studies have revealed that circadian rhythm disruption causes various types of disease. In this chapter, we summarize the effect of core clock gene SNPs on circadian rhythm and diseases in humans.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in protein chemistry and structural biology
Advances in protein chemistry and structural biology BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
7.40
自引率
0.00%
发文量
66
审稿时长
>12 weeks
期刊介绍: Published continuously since 1944, The Advances in Protein Chemistry and Structural Biology series has been the essential resource for protein chemists. Each volume brings forth new information about protocols and analysis of proteins. Each thematically organized volume is guest edited by leading experts in a broad range of protein-related topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信