{"title":"社会网络的多层次纵向分析。","authors":"Johan Koskinen, Tom A B Snijders","doi":"10.1093/jrsssa/qnac009","DOIUrl":null,"url":null,"abstract":"<p><p>Stochastic actor-oriented models (SAOMs) are a modelling framework for analysing network dynamics using network panel data. This paper extends the SAOM to the analysis of multilevel network panels through a random coefficient model, estimated with a Bayesian approach. The proposed model allows testing theories about network dynamics, social influence, and interdependence of multiple networks. It is illustrated by a study of the dynamic interdependence of friendship networks and minor delinquency. Data were available for 126 classrooms in the first year of secondary school, of which 82 were used, containing relatively few missing data points and having not too much network turnover.</p>","PeriodicalId":49983,"journal":{"name":"Journal of the Royal Statistical Society Series A-Statistics in Society","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5b/19/qnac009.PMC10376442.pdf","citationCount":"8","resultStr":"{\"title\":\"Multilevel longitudinal analysis of social networks.\",\"authors\":\"Johan Koskinen, Tom A B Snijders\",\"doi\":\"10.1093/jrsssa/qnac009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stochastic actor-oriented models (SAOMs) are a modelling framework for analysing network dynamics using network panel data. This paper extends the SAOM to the analysis of multilevel network panels through a random coefficient model, estimated with a Bayesian approach. The proposed model allows testing theories about network dynamics, social influence, and interdependence of multiple networks. It is illustrated by a study of the dynamic interdependence of friendship networks and minor delinquency. Data were available for 126 classrooms in the first year of secondary school, of which 82 were used, containing relatively few missing data points and having not too much network turnover.</p>\",\"PeriodicalId\":49983,\"journal\":{\"name\":\"Journal of the Royal Statistical Society Series A-Statistics in Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5b/19/qnac009.PMC10376442.pdf\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Royal Statistical Society Series A-Statistics in Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/jrsssa/qnac009\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SOCIAL SCIENCES, MATHEMATICAL METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Royal Statistical Society Series A-Statistics in Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jrsssa/qnac009","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
Multilevel longitudinal analysis of social networks.
Stochastic actor-oriented models (SAOMs) are a modelling framework for analysing network dynamics using network panel data. This paper extends the SAOM to the analysis of multilevel network panels through a random coefficient model, estimated with a Bayesian approach. The proposed model allows testing theories about network dynamics, social influence, and interdependence of multiple networks. It is illustrated by a study of the dynamic interdependence of friendship networks and minor delinquency. Data were available for 126 classrooms in the first year of secondary school, of which 82 were used, containing relatively few missing data points and having not too much network turnover.
期刊介绍:
Series A (Statistics in Society) publishes high quality papers that demonstrate how statistical thinking, design and analyses play a vital role in all walks of life and benefit society in general. There is no restriction on subject-matter: any interesting, topical and revelatory applications of statistics are welcome. For example, important applications of statistical and related data science methodology in medicine, business and commerce, industry, economics and finance, education and teaching, physical and biomedical sciences, the environment, the law, government and politics, demography, psychology, sociology and sport all fall within the journal''s remit. The journal is therefore aimed at a wide statistical audience and at professional statisticians in particular. Its emphasis is on well-written and clearly reasoned quantitative approaches to problems in the real world rather than the exposition of technical detail. Thus, although the methodological basis of papers must be sound and adequately explained, methodology per se should not be the main focus of a Series A paper. Of particular interest are papers on topical or contentious statistical issues, papers which give reviews or exposés of current statistical concerns and papers which demonstrate how appropriate statistical thinking has contributed to our understanding of important substantive questions. Historical, professional and biographical contributions are also welcome, as are discussions of methods of data collection and of ethical issues, provided that all such papers have substantial statistical relevance.