DCAlign v1.0:使用协同进化模型和知情先验对生物序列进行对齐。

IF 4.4 3区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Anna Paola Muntoni, Andrea Pagnani
{"title":"DCAlign v1.0:使用协同进化模型和知情先验对生物序列进行对齐。","authors":"Anna Paola Muntoni,&nbsp;Andrea Pagnani","doi":"10.1093/bioinformatics/btad537","DOIUrl":null,"url":null,"abstract":"<p><strong>Summary: </strong>DCAlign is a new alignment method able to cope with the conservation and the co-evolution signals that characterize the columns of multiple sequence alignments of homologous sequences. However, the pre-processing steps required to align a candidate sequence are computationally demanding. We show in v1.0 how to dramatically reduce the overall computing time by including an empirical prior over an informative set of variables mirroring the presence of insertions and deletions.</p><p><strong>Availability and implementation: </strong>DCAlign v1.0 is implemented in Julia and it is fully available at https://github.com/infernet-h2020/DCAlign.</p>","PeriodicalId":8903,"journal":{"name":"Bioinformatics","volume":"39 9","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10491954/pdf/","citationCount":"0","resultStr":"{\"title\":\"DCAlign v1.0: aligning biological sequences using co-evolution models and informed priors.\",\"authors\":\"Anna Paola Muntoni,&nbsp;Andrea Pagnani\",\"doi\":\"10.1093/bioinformatics/btad537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Summary: </strong>DCAlign is a new alignment method able to cope with the conservation and the co-evolution signals that characterize the columns of multiple sequence alignments of homologous sequences. However, the pre-processing steps required to align a candidate sequence are computationally demanding. We show in v1.0 how to dramatically reduce the overall computing time by including an empirical prior over an informative set of variables mirroring the presence of insertions and deletions.</p><p><strong>Availability and implementation: </strong>DCAlign v1.0 is implemented in Julia and it is fully available at https://github.com/infernet-h2020/DCAlign.</p>\",\"PeriodicalId\":8903,\"journal\":{\"name\":\"Bioinformatics\",\"volume\":\"39 9\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10491954/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bioinformatics/btad537\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btad537","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

摘要:DCAlign是一种新的比对方法,能够处理同源序列多序列比对列的保守性和协同进化信号。然而,对齐候选序列所需的预处理步骤在计算上要求很高。我们在v1.0中展示了如何通过在反映插入和删除存在的一组信息变量上包含经验先验来显著减少总体计算时间。可用性和实现:DCAlign v1.0是在Julia中实现的,可以在https://github.com/infernet-h2020/DCAlign上完全获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

DCAlign v1.0: aligning biological sequences using co-evolution models and informed priors.

DCAlign v1.0: aligning biological sequences using co-evolution models and informed priors.

Summary: DCAlign is a new alignment method able to cope with the conservation and the co-evolution signals that characterize the columns of multiple sequence alignments of homologous sequences. However, the pre-processing steps required to align a candidate sequence are computationally demanding. We show in v1.0 how to dramatically reduce the overall computing time by including an empirical prior over an informative set of variables mirroring the presence of insertions and deletions.

Availability and implementation: DCAlign v1.0 is implemented in Julia and it is fully available at https://github.com/infernet-h2020/DCAlign.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioinformatics
Bioinformatics 生物-生化研究方法
CiteScore
11.20
自引率
5.20%
发文量
753
审稿时长
2.1 months
期刊介绍: The leading journal in its field, Bioinformatics publishes the highest quality scientific papers and review articles of interest to academic and industrial researchers. Its main focus is on new developments in genome bioinformatics and computational biology. Two distinct sections within the journal - Discovery Notes and Application Notes- focus on shorter papers; the former reporting biologically interesting discoveries using computational methods, the latter exploring the applications used for experiments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信