零售品牌在线性中所占空间:神经网络与多元回归估计

Mónica Gómez Suárez
{"title":"零售品牌在线性中所占空间:神经网络与多元回归估计","authors":"Mónica Gómez Suárez","doi":"10.1016/S1138-5758(09)70047-7","DOIUrl":null,"url":null,"abstract":"<div><p>This paper analyses the influence of some variables in the shelf space occupied by store brands. We propose and test a theoretical model of store brand shelf space. Data were collected for 29 product categories in 55 retail stores. A two-phase procedure was adopted: (1) multiple regression analyses; (2) neural network simulation (ANN). The application of this last method improves the goodness of fit obtained through the regression method. Furthermore, it presents additional advantages since ANN does not need to fulfil the main assumptions needed in regression analyses. The findings corroborate our proposed model, in that all hypothesized relationships and directions are supported. On this basis, we draw theoretical as well as useful managerial implications for both retailers and manufacturers.</p></div>","PeriodicalId":100345,"journal":{"name":"Cuadernos de Economía y Dirección de la Empresa","volume":"12 41","pages":"Pages 37-66"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1138-5758(09)70047-7","citationCount":"2","resultStr":"{\"title\":\"Espacio ocupado en el lineal por las marcas de distribuidor: estimación mediante redes neuronales vs regresión multiple\",\"authors\":\"Mónica Gómez Suárez\",\"doi\":\"10.1016/S1138-5758(09)70047-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper analyses the influence of some variables in the shelf space occupied by store brands. We propose and test a theoretical model of store brand shelf space. Data were collected for 29 product categories in 55 retail stores. A two-phase procedure was adopted: (1) multiple regression analyses; (2) neural network simulation (ANN). The application of this last method improves the goodness of fit obtained through the regression method. Furthermore, it presents additional advantages since ANN does not need to fulfil the main assumptions needed in regression analyses. The findings corroborate our proposed model, in that all hypothesized relationships and directions are supported. On this basis, we draw theoretical as well as useful managerial implications for both retailers and manufacturers.</p></div>\",\"PeriodicalId\":100345,\"journal\":{\"name\":\"Cuadernos de Economía y Dirección de la Empresa\",\"volume\":\"12 41\",\"pages\":\"Pages 37-66\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1138-5758(09)70047-7\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cuadernos de Economía y Dirección de la Empresa\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1138575809700477\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cuadernos de Economía y Dirección de la Empresa","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1138575809700477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文分析了一些变量对商店品牌占用货架空间的影响。我们提出并检验了一个店铺品牌货架空间的理论模型。收集了55家零售店29种产品类别的数据。采用两阶段分析方法:(1)多元回归分析;(2)神经网络仿真(ANN)。最后一种方法的应用提高了回归法得到的拟合优度。此外,它还具有额外的优势,因为人工神经网络不需要满足回归分析所需的主要假设。研究结果证实了我们提出的模型,因为所有假设的关系和方向都得到了支持。在此基础上,我们为零售商和制造商都提出了理论和有用的管理启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Espacio ocupado en el lineal por las marcas de distribuidor: estimación mediante redes neuronales vs regresión multiple

This paper analyses the influence of some variables in the shelf space occupied by store brands. We propose and test a theoretical model of store brand shelf space. Data were collected for 29 product categories in 55 retail stores. A two-phase procedure was adopted: (1) multiple regression analyses; (2) neural network simulation (ANN). The application of this last method improves the goodness of fit obtained through the regression method. Furthermore, it presents additional advantages since ANN does not need to fulfil the main assumptions needed in regression analyses. The findings corroborate our proposed model, in that all hypothesized relationships and directions are supported. On this basis, we draw theoretical as well as useful managerial implications for both retailers and manufacturers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信