Heng Yang , Tiantian Zhang , Chunlan Chen , Chengyao Chiang , Kai Chen , Yan Wu , Zhengxin Liu , Yajun Zhou , Lizhi Zhu , Duo Zheng
{"title":"拉西洛林B与微管蛋白-秋水仙碱结合位点共价结合,抑制三阴性乳腺癌症增殖并诱导细胞凋亡。","authors":"Heng Yang , Tiantian Zhang , Chunlan Chen , Chengyao Chiang , Kai Chen , Yan Wu , Zhengxin Liu , Yajun Zhou , Lizhi Zhu , Duo Zheng","doi":"10.1016/j.cbi.2023.110681","DOIUrl":null,"url":null,"abstract":"<div><p>Laxiflorin B is a natural <em>ent</em><span>-kaurane diterpenoid that can be isolated from the leaves of the </span><span><em>Isodon</em><em> eriocalyx</em></span> var. <em>laxiflora</em><span><span>, a perennial shrub native to parts of China. While this compound has potent cytotoxic activity against various tumor cells, the anti-tumor targets and molecular mechanisms of Laxiflorin B are unclear. Here, we show that Laxiflorin B exhibits strong antiproliferative and proapoptotic effects on triple-negative breast cancer (TNBC) cells. At the mechanistic level, we show that β-tubulin (TUBB) is a cellular target of Laxiflorin B. By covalently binding the Cys239 and C354 residues of the TUBB colchicine-binding site, Laxiflorin B disturbs microtubule integrity and structure in vitro and in vivo. Cytotoxicity analyses also showed that the α, β-unsaturated carbonyl in the D ring of Laxiflorin B is responsible for mediating its covalent binding and anti-tumor activity. To assess the therapeutic effects of Laxiflorin B, we synthesized a Laxiflorin B-ALA pro-drug and delivered it by intraperitoneal injection (10 mg/kg) into a 4T1 orthotopic tumor mouse model. Drug treatment had anti-tumor effects without inducing notable weight loss or organ dysfunction. We conclude that Laxiflorin B is a promising </span>colchicine binding site inhibitor that might be exploited in the context of TNBC treatment in the future.</span></p></div>","PeriodicalId":274,"journal":{"name":"Chemico-Biological Interactions","volume":"383 ","pages":"Article 110681"},"PeriodicalIF":4.7000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laxiflorin B covalently binds the tubulin colchicine-binding site to inhibit triple negative breast cancer proliferation and induce apoptosis\",\"authors\":\"Heng Yang , Tiantian Zhang , Chunlan Chen , Chengyao Chiang , Kai Chen , Yan Wu , Zhengxin Liu , Yajun Zhou , Lizhi Zhu , Duo Zheng\",\"doi\":\"10.1016/j.cbi.2023.110681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Laxiflorin B is a natural <em>ent</em><span>-kaurane diterpenoid that can be isolated from the leaves of the </span><span><em>Isodon</em><em> eriocalyx</em></span> var. <em>laxiflora</em><span><span>, a perennial shrub native to parts of China. While this compound has potent cytotoxic activity against various tumor cells, the anti-tumor targets and molecular mechanisms of Laxiflorin B are unclear. Here, we show that Laxiflorin B exhibits strong antiproliferative and proapoptotic effects on triple-negative breast cancer (TNBC) cells. At the mechanistic level, we show that β-tubulin (TUBB) is a cellular target of Laxiflorin B. By covalently binding the Cys239 and C354 residues of the TUBB colchicine-binding site, Laxiflorin B disturbs microtubule integrity and structure in vitro and in vivo. Cytotoxicity analyses also showed that the α, β-unsaturated carbonyl in the D ring of Laxiflorin B is responsible for mediating its covalent binding and anti-tumor activity. To assess the therapeutic effects of Laxiflorin B, we synthesized a Laxiflorin B-ALA pro-drug and delivered it by intraperitoneal injection (10 mg/kg) into a 4T1 orthotopic tumor mouse model. Drug treatment had anti-tumor effects without inducing notable weight loss or organ dysfunction. We conclude that Laxiflorin B is a promising </span>colchicine binding site inhibitor that might be exploited in the context of TNBC treatment in the future.</span></p></div>\",\"PeriodicalId\":274,\"journal\":{\"name\":\"Chemico-Biological Interactions\",\"volume\":\"383 \",\"pages\":\"Article 110681\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemico-Biological Interactions\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009279723003484\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemico-Biological Interactions","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009279723003484","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Laxiflorin B covalently binds the tubulin colchicine-binding site to inhibit triple negative breast cancer proliferation and induce apoptosis
Laxiflorin B is a natural ent-kaurane diterpenoid that can be isolated from the leaves of the Isodon eriocalyx var. laxiflora, a perennial shrub native to parts of China. While this compound has potent cytotoxic activity against various tumor cells, the anti-tumor targets and molecular mechanisms of Laxiflorin B are unclear. Here, we show that Laxiflorin B exhibits strong antiproliferative and proapoptotic effects on triple-negative breast cancer (TNBC) cells. At the mechanistic level, we show that β-tubulin (TUBB) is a cellular target of Laxiflorin B. By covalently binding the Cys239 and C354 residues of the TUBB colchicine-binding site, Laxiflorin B disturbs microtubule integrity and structure in vitro and in vivo. Cytotoxicity analyses also showed that the α, β-unsaturated carbonyl in the D ring of Laxiflorin B is responsible for mediating its covalent binding and anti-tumor activity. To assess the therapeutic effects of Laxiflorin B, we synthesized a Laxiflorin B-ALA pro-drug and delivered it by intraperitoneal injection (10 mg/kg) into a 4T1 orthotopic tumor mouse model. Drug treatment had anti-tumor effects without inducing notable weight loss or organ dysfunction. We conclude that Laxiflorin B is a promising colchicine binding site inhibitor that might be exploited in the context of TNBC treatment in the future.
期刊介绍:
Chemico-Biological Interactions publishes research reports and review articles that examine the molecular, cellular, and/or biochemical basis of toxicologically relevant outcomes. Special emphasis is placed on toxicological mechanisms associated with interactions between chemicals and biological systems. Outcomes may include all traditional endpoints caused by synthetic or naturally occurring chemicals, both in vivo and in vitro. Endpoints of interest include, but are not limited to carcinogenesis, mutagenesis, respiratory toxicology, neurotoxicology, reproductive and developmental toxicology, and immunotoxicology.