Marzieh Ayati, Serhan Yilmaz, Filipa Blasco Tavares Pereira Lopes, Mark Chance, Mehmet Koyuturk
{"title":"利用激酶和磷酸化位点的功能图谱预测激酶与底物的联系","authors":"Marzieh Ayati, Serhan Yilmaz, Filipa Blasco Tavares Pereira Lopes, Mark Chance, Mehmet Koyuturk","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Protein phosphorylation is a key post-translational modification that plays a central role in many cellular processes. With recent advances in biotechnology, thousands of phosphorylated sites can be identified and quantified in a given sample, enabling proteome-wide screening of cellular signaling. However, for most (> 90%) of the phosphorylation sites that are identified in these experiments, the kinase(s) that target these sites are unknown. To broadly utilize available structural, functional, evolutionary, and contextual information in predicting kinase-substrate associations (KSAs), we develop a network-based machine learning framework. Our framework integrates a multitude of data sources to characterize the landscape of functional relationships and associations among phosphosites and kinases. To construct a phosphosite-phosphosite association network, we use sequence similarity, shared biological pathways, co-evolution, co-occurrence, and co-phosphorylation of phosphosites across different biological states. To construct a kinase-kinase association network, we integrate protein-protein interactions, shared biological pathways, and membership in common kinase families. We use node embeddings computed from these heterogeneous networks to train machine learning models for predicting kinase-substrate associations. Our systematic computational experiments using the PhosphositePLUS database shows that the resulting algorithm, NetKSA, outperforms two state-of-the-art algorithms, including KinomeXplorer and LinkPhinder, in overall KSA prediction. By stratifying the ranking of kinases, NetKSA also enables annotation of phosphosites that are targeted by relatively less-studied kinases.Availability: The code and data are available at compbio.case.edu/NetKSA/.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"28 ","pages":"73-84"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b4/25/nihms-1852984.PMC9782723.pdf","citationCount":"0","resultStr":"{\"title\":\"Prediction of Kinase-Substrate Associations Using The Functional Landscape of Kinases and Phosphorylation Sites.\",\"authors\":\"Marzieh Ayati, Serhan Yilmaz, Filipa Blasco Tavares Pereira Lopes, Mark Chance, Mehmet Koyuturk\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Protein phosphorylation is a key post-translational modification that plays a central role in many cellular processes. With recent advances in biotechnology, thousands of phosphorylated sites can be identified and quantified in a given sample, enabling proteome-wide screening of cellular signaling. However, for most (> 90%) of the phosphorylation sites that are identified in these experiments, the kinase(s) that target these sites are unknown. To broadly utilize available structural, functional, evolutionary, and contextual information in predicting kinase-substrate associations (KSAs), we develop a network-based machine learning framework. Our framework integrates a multitude of data sources to characterize the landscape of functional relationships and associations among phosphosites and kinases. To construct a phosphosite-phosphosite association network, we use sequence similarity, shared biological pathways, co-evolution, co-occurrence, and co-phosphorylation of phosphosites across different biological states. To construct a kinase-kinase association network, we integrate protein-protein interactions, shared biological pathways, and membership in common kinase families. We use node embeddings computed from these heterogeneous networks to train machine learning models for predicting kinase-substrate associations. Our systematic computational experiments using the PhosphositePLUS database shows that the resulting algorithm, NetKSA, outperforms two state-of-the-art algorithms, including KinomeXplorer and LinkPhinder, in overall KSA prediction. By stratifying the ranking of kinases, NetKSA also enables annotation of phosphosites that are targeted by relatively less-studied kinases.Availability: The code and data are available at compbio.case.edu/NetKSA/.</p>\",\"PeriodicalId\":34954,\"journal\":{\"name\":\"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing\",\"volume\":\"28 \",\"pages\":\"73-84\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b4/25/nihms-1852984.PMC9782723.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
Prediction of Kinase-Substrate Associations Using The Functional Landscape of Kinases and Phosphorylation Sites.
Protein phosphorylation is a key post-translational modification that plays a central role in many cellular processes. With recent advances in biotechnology, thousands of phosphorylated sites can be identified and quantified in a given sample, enabling proteome-wide screening of cellular signaling. However, for most (> 90%) of the phosphorylation sites that are identified in these experiments, the kinase(s) that target these sites are unknown. To broadly utilize available structural, functional, evolutionary, and contextual information in predicting kinase-substrate associations (KSAs), we develop a network-based machine learning framework. Our framework integrates a multitude of data sources to characterize the landscape of functional relationships and associations among phosphosites and kinases. To construct a phosphosite-phosphosite association network, we use sequence similarity, shared biological pathways, co-evolution, co-occurrence, and co-phosphorylation of phosphosites across different biological states. To construct a kinase-kinase association network, we integrate protein-protein interactions, shared biological pathways, and membership in common kinase families. We use node embeddings computed from these heterogeneous networks to train machine learning models for predicting kinase-substrate associations. Our systematic computational experiments using the PhosphositePLUS database shows that the resulting algorithm, NetKSA, outperforms two state-of-the-art algorithms, including KinomeXplorer and LinkPhinder, in overall KSA prediction. By stratifying the ranking of kinases, NetKSA also enables annotation of phosphosites that are targeted by relatively less-studied kinases.Availability: The code and data are available at compbio.case.edu/NetKSA/.