沉积工艺对生物电子用Ti3C2Tx MXene薄膜稳定性的影响。

IF 4.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
2D Materials Pub Date : 2023-10-01 Epub Date: 2023-07-12 DOI:10.1088/2053-1583/ace26c
Sneha Shankar, Brendan B Murphy, Nicolette Driscoll, Mikhail Shekhirev, Geetha Valurouthu, Kateryna Shevchuk, Mark Anayee, Francesca Cimino, Yury Gogotsi, Flavia Vitale
{"title":"沉积工艺对生物电子用Ti3C2Tx MXene薄膜稳定性的影响。","authors":"Sneha Shankar, Brendan B Murphy, Nicolette Driscoll, Mikhail Shekhirev, Geetha Valurouthu, Kateryna Shevchuk, Mark Anayee, Francesca Cimino, Yury Gogotsi, Flavia Vitale","doi":"10.1088/2053-1583/ace26c","DOIUrl":null,"url":null,"abstract":"<p><p>Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene is emerging as the enabling material in a broad range of wearable and implantable medical technologies, thanks to its outstanding electrical, electrochemical, and optoelectronic properties, and its compatibility with high-throughput solution-based processing. While the prevalence of Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene in biomedical research, and in particular bioelectronics, has steadily increased, the long-term stability and degradation of Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene films have not yet been thoroughly investigated, limiting its use for chronic applications. Here, we investigate the stability of Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> films and electrodes under environmental conditions that are relevant to medical and bioelectronic technologies: storage in ambient atmosphere (shelf-life), submersion in saline (akin to the <i>in vivo</i> environment), and storage in a desiccator (low-humidity). Furthermore, to evaluate the effect of the MXene deposition method and thickness on the film stability in the different conditions, we compare thin (25 nm), and thick (1.0 μm) films and electrodes fabricated via spray-coating and blade-coating. Our findings indicate that film processing method and thickness play a significant role in determining the long-term performance of Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> films and electrodes, with highly aligned, thick films from blade coating remarkably retaining their conductivity, electrochemical impedance, and morphological integrity even after 30 days in saline. Our extensive spectroscopic analysis reveals that the degradation of Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> films in high-humidity environments is primarily driven by moisture intercalation, ingress, and film delamination, with evidence of only minimal to moderate oxidation.</p>","PeriodicalId":6812,"journal":{"name":"2D Materials","volume":"10 4","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10373437/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effect of the deposition process on the stability of Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene films for bioelectronics.\",\"authors\":\"Sneha Shankar, Brendan B Murphy, Nicolette Driscoll, Mikhail Shekhirev, Geetha Valurouthu, Kateryna Shevchuk, Mark Anayee, Francesca Cimino, Yury Gogotsi, Flavia Vitale\",\"doi\":\"10.1088/2053-1583/ace26c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene is emerging as the enabling material in a broad range of wearable and implantable medical technologies, thanks to its outstanding electrical, electrochemical, and optoelectronic properties, and its compatibility with high-throughput solution-based processing. While the prevalence of Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene in biomedical research, and in particular bioelectronics, has steadily increased, the long-term stability and degradation of Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene films have not yet been thoroughly investigated, limiting its use for chronic applications. Here, we investigate the stability of Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> films and electrodes under environmental conditions that are relevant to medical and bioelectronic technologies: storage in ambient atmosphere (shelf-life), submersion in saline (akin to the <i>in vivo</i> environment), and storage in a desiccator (low-humidity). Furthermore, to evaluate the effect of the MXene deposition method and thickness on the film stability in the different conditions, we compare thin (25 nm), and thick (1.0 μm) films and electrodes fabricated via spray-coating and blade-coating. Our findings indicate that film processing method and thickness play a significant role in determining the long-term performance of Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> films and electrodes, with highly aligned, thick films from blade coating remarkably retaining their conductivity, electrochemical impedance, and morphological integrity even after 30 days in saline. Our extensive spectroscopic analysis reveals that the degradation of Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> films in high-humidity environments is primarily driven by moisture intercalation, ingress, and film delamination, with evidence of only minimal to moderate oxidation.</p>\",\"PeriodicalId\":6812,\"journal\":{\"name\":\"2D Materials\",\"volume\":\"10 4\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10373437/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2D Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/2053-1583/ace26c\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2D Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2053-1583/ace26c","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

Ti3C2Tx MXene由于其卓越的电学、电化学和光电子性能,以及与基于高通量解决方案的加工的兼容性,正在成为一系列可穿戴和植入式医疗技术的赋能材料。尽管Ti3C2Tx MXene在生物医学研究,特别是生物电子学中的流行率稳步上升,但Ti3C2Tx-MXene薄膜的长期稳定性和降解尚未得到彻底研究,限制了其在慢性应用中的应用。在这里,我们研究了Ti3C2Tx薄膜和电极在与医疗和生物电子技术相关的环境条件下的稳定性:在环境大气中储存(保质期)、浸泡在盐水中(类似于体内环境)和在干燥器中储存(低湿度)。此外,为了评估MXene沉积方法和厚度在不同条件下对薄膜稳定性的影响,我们比较了通过喷涂和刮涂制备的薄(25 nm)和厚(1.0μm)薄膜和电极。我们的研究结果表明,薄膜加工方法和厚度在决定Ti3C2Tx薄膜和电极的长期性能方面起着重要作用,即使在盐水中浸泡30天后,刀片涂层形成的高度排列的厚膜也能显著保持其导电性、电化学阻抗和形态完整性。我们广泛的光谱分析表明,Ti3C2Tx薄膜在高湿度环境中的降解主要是由湿气嵌入、进入和薄膜分层驱动的,有证据表明只有最小到中等程度的氧化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of the deposition process on the stability of Ti3C2Tx MXene films for bioelectronics.

Ti3C2Tx MXene is emerging as the enabling material in a broad range of wearable and implantable medical technologies, thanks to its outstanding electrical, electrochemical, and optoelectronic properties, and its compatibility with high-throughput solution-based processing. While the prevalence of Ti3C2Tx MXene in biomedical research, and in particular bioelectronics, has steadily increased, the long-term stability and degradation of Ti3C2Tx MXene films have not yet been thoroughly investigated, limiting its use for chronic applications. Here, we investigate the stability of Ti3C2Tx films and electrodes under environmental conditions that are relevant to medical and bioelectronic technologies: storage in ambient atmosphere (shelf-life), submersion in saline (akin to the in vivo environment), and storage in a desiccator (low-humidity). Furthermore, to evaluate the effect of the MXene deposition method and thickness on the film stability in the different conditions, we compare thin (25 nm), and thick (1.0 μm) films and electrodes fabricated via spray-coating and blade-coating. Our findings indicate that film processing method and thickness play a significant role in determining the long-term performance of Ti3C2Tx films and electrodes, with highly aligned, thick films from blade coating remarkably retaining their conductivity, electrochemical impedance, and morphological integrity even after 30 days in saline. Our extensive spectroscopic analysis reveals that the degradation of Ti3C2Tx films in high-humidity environments is primarily driven by moisture intercalation, ingress, and film delamination, with evidence of only minimal to moderate oxidation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
2D Materials
2D Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
10.70
自引率
5.50%
发文量
138
审稿时长
1.5 months
期刊介绍: 2D Materials is a multidisciplinary, electronic-only journal devoted to publishing fundamental and applied research of the highest quality and impact covering all aspects of graphene and related two-dimensional materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信