Xueyan Hou , Yalin Guan , Sisi He , Zeqing Wu , Jintao Bai , Jingjing Xu , Jingwen Wang , Suyue Xu , Huiqing Zhu , Yanyan Yin , Xue Yang , Yongli Shi
{"title":"一种新型的基于泊洛沙姆188的自组装纳米平台,用于三阴性乳腺癌症靶向治疗。","authors":"Xueyan Hou , Yalin Guan , Sisi He , Zeqing Wu , Jintao Bai , Jingjing Xu , Jingwen Wang , Suyue Xu , Huiqing Zhu , Yanyan Yin , Xue Yang , Yongli Shi","doi":"10.1016/j.cbi.2023.110710","DOIUrl":null,"url":null,"abstract":"<div><p><span>Poloxamer 188<span> is a widely used pharmaceutical excipient, which can be found in a variety of drug formulations. In this study, a novel self-assembled nanoplatform was developed for active targeting of folate receptor-overexpressing triple-negative breast cancer. This platform, FPP NPs<span>, was prepared by the retrofitted poloxamer 188 derivatives, resulting in nanoparticles with an appropriate size (< 100 nm), good stability, and satisfactory biocompatibility. Cellular uptake and in vivo distribution studies showed that the FPP NPs had strong tumor cell uptake and active targeting capabilities. Furthermore, </span></span></span>docetaxel<span> (DTX) was loaded into FPP NPs in this research. The resulting DTX/FPP NPs exhibited high drug encapsulation efficiency and drug loading capacity, and could rapidly release DTX under slightly acidic conditions, significantly increasing the antitumor activity<span> of the encapsulated drug both in vitro and in vivo. In addition, DTX/FPP NPs could significantly decrease the hepatotoxicity and nephrotoxicity of DTX. Therefore, this drug delivery nanoplatform, based on retrofitted poloxamer 188 with self-assembly properties in aqueous solution and active targeting capabilities to tumors, may provide a promising approach for targeted treatment of triple-negative breast cancer.</span></span></p></div>","PeriodicalId":274,"journal":{"name":"Chemico-Biological Interactions","volume":"384 ","pages":"Article 110710"},"PeriodicalIF":4.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel self-assembled nanoplatform based on retrofitting poloxamer 188 for triple-negative breast cancer targeting treatment\",\"authors\":\"Xueyan Hou , Yalin Guan , Sisi He , Zeqing Wu , Jintao Bai , Jingjing Xu , Jingwen Wang , Suyue Xu , Huiqing Zhu , Yanyan Yin , Xue Yang , Yongli Shi\",\"doi\":\"10.1016/j.cbi.2023.110710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Poloxamer 188<span> is a widely used pharmaceutical excipient, which can be found in a variety of drug formulations. In this study, a novel self-assembled nanoplatform was developed for active targeting of folate receptor-overexpressing triple-negative breast cancer. This platform, FPP NPs<span>, was prepared by the retrofitted poloxamer 188 derivatives, resulting in nanoparticles with an appropriate size (< 100 nm), good stability, and satisfactory biocompatibility. Cellular uptake and in vivo distribution studies showed that the FPP NPs had strong tumor cell uptake and active targeting capabilities. Furthermore, </span></span></span>docetaxel<span> (DTX) was loaded into FPP NPs in this research. The resulting DTX/FPP NPs exhibited high drug encapsulation efficiency and drug loading capacity, and could rapidly release DTX under slightly acidic conditions, significantly increasing the antitumor activity<span> of the encapsulated drug both in vitro and in vivo. In addition, DTX/FPP NPs could significantly decrease the hepatotoxicity and nephrotoxicity of DTX. Therefore, this drug delivery nanoplatform, based on retrofitted poloxamer 188 with self-assembly properties in aqueous solution and active targeting capabilities to tumors, may provide a promising approach for targeted treatment of triple-negative breast cancer.</span></span></p></div>\",\"PeriodicalId\":274,\"journal\":{\"name\":\"Chemico-Biological Interactions\",\"volume\":\"384 \",\"pages\":\"Article 110710\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemico-Biological Interactions\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009279723003770\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemico-Biological Interactions","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009279723003770","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
A novel self-assembled nanoplatform based on retrofitting poloxamer 188 for triple-negative breast cancer targeting treatment
Poloxamer 188 is a widely used pharmaceutical excipient, which can be found in a variety of drug formulations. In this study, a novel self-assembled nanoplatform was developed for active targeting of folate receptor-overexpressing triple-negative breast cancer. This platform, FPP NPs, was prepared by the retrofitted poloxamer 188 derivatives, resulting in nanoparticles with an appropriate size (< 100 nm), good stability, and satisfactory biocompatibility. Cellular uptake and in vivo distribution studies showed that the FPP NPs had strong tumor cell uptake and active targeting capabilities. Furthermore, docetaxel (DTX) was loaded into FPP NPs in this research. The resulting DTX/FPP NPs exhibited high drug encapsulation efficiency and drug loading capacity, and could rapidly release DTX under slightly acidic conditions, significantly increasing the antitumor activity of the encapsulated drug both in vitro and in vivo. In addition, DTX/FPP NPs could significantly decrease the hepatotoxicity and nephrotoxicity of DTX. Therefore, this drug delivery nanoplatform, based on retrofitted poloxamer 188 with self-assembly properties in aqueous solution and active targeting capabilities to tumors, may provide a promising approach for targeted treatment of triple-negative breast cancer.
期刊介绍:
Chemico-Biological Interactions publishes research reports and review articles that examine the molecular, cellular, and/or biochemical basis of toxicologically relevant outcomes. Special emphasis is placed on toxicological mechanisms associated with interactions between chemicals and biological systems. Outcomes may include all traditional endpoints caused by synthetic or naturally occurring chemicals, both in vivo and in vitro. Endpoints of interest include, but are not limited to carcinogenesis, mutagenesis, respiratory toxicology, neurotoxicology, reproductive and developmental toxicology, and immunotoxicology.