{"title":"新冠肺炎爆发的数学模型。","authors":"Arvind Kumar Sinha, Nishant Namdev, Pradeep Shende","doi":"10.1007/s13721-021-00350-2","DOIUrl":null,"url":null,"abstract":"<p><p>The novel coronavirus SARS-Cov-2 is a pandemic condition and poses a massive menace to health. The governments of different countries and their various prohibitory steps to restrict the virus's expanse have changed individuals' communication processes. Due to physical and financial factors, the population's density is more likely to interact and spread the virus. We establish a mathematical model to present the spread of the COVID-19 in India and worldwide. By the simulation process, we find the infected cases, infected fatality rate, and recovery rate of the COVID-19. We validate the model by the rough set method. In the method, we obtain the accuracy for the infected case is 90.19%, an infection-fatality of COVID-19 is 94%, and the recovery is 85.57%, approximately the same as the actual situation reported WHO. This paper uses the generalized simulation process to predict the outbreak of COVID-19 for different continents. It gives the way of future trends of the COVID-19 outbreak till December 2021 and casts enlightenment about learning the drifts of the outbreak worldwide.</p>","PeriodicalId":44876,"journal":{"name":"Network Modeling and Analysis in Health Informatics and Bioinformatics","volume":"11 1","pages":"5"},"PeriodicalIF":2.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8661390/pdf/","citationCount":"7","resultStr":"{\"title\":\"Mathematical modeling of the outbreak of COVID-19.\",\"authors\":\"Arvind Kumar Sinha, Nishant Namdev, Pradeep Shende\",\"doi\":\"10.1007/s13721-021-00350-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The novel coronavirus SARS-Cov-2 is a pandemic condition and poses a massive menace to health. The governments of different countries and their various prohibitory steps to restrict the virus's expanse have changed individuals' communication processes. Due to physical and financial factors, the population's density is more likely to interact and spread the virus. We establish a mathematical model to present the spread of the COVID-19 in India and worldwide. By the simulation process, we find the infected cases, infected fatality rate, and recovery rate of the COVID-19. We validate the model by the rough set method. In the method, we obtain the accuracy for the infected case is 90.19%, an infection-fatality of COVID-19 is 94%, and the recovery is 85.57%, approximately the same as the actual situation reported WHO. This paper uses the generalized simulation process to predict the outbreak of COVID-19 for different continents. It gives the way of future trends of the COVID-19 outbreak till December 2021 and casts enlightenment about learning the drifts of the outbreak worldwide.</p>\",\"PeriodicalId\":44876,\"journal\":{\"name\":\"Network Modeling and Analysis in Health Informatics and Bioinformatics\",\"volume\":\"11 1\",\"pages\":\"5\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8661390/pdf/\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network Modeling and Analysis in Health Informatics and Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13721-021-00350-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/12/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Modeling and Analysis in Health Informatics and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13721-021-00350-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/12/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Mathematical modeling of the outbreak of COVID-19.
The novel coronavirus SARS-Cov-2 is a pandemic condition and poses a massive menace to health. The governments of different countries and their various prohibitory steps to restrict the virus's expanse have changed individuals' communication processes. Due to physical and financial factors, the population's density is more likely to interact and spread the virus. We establish a mathematical model to present the spread of the COVID-19 in India and worldwide. By the simulation process, we find the infected cases, infected fatality rate, and recovery rate of the COVID-19. We validate the model by the rough set method. In the method, we obtain the accuracy for the infected case is 90.19%, an infection-fatality of COVID-19 is 94%, and the recovery is 85.57%, approximately the same as the actual situation reported WHO. This paper uses the generalized simulation process to predict the outbreak of COVID-19 for different continents. It gives the way of future trends of the COVID-19 outbreak till December 2021 and casts enlightenment about learning the drifts of the outbreak worldwide.
期刊介绍:
NetMAHIB publishes original research articles and reviews reporting how graph theory, statistics, linear algebra and machine learning techniques can be effectively used for modelling and analysis in health informatics and bioinformatics. It aims at creating a synergy between these disciplines by providing a forum for disseminating the latest developments and research findings; hence, results can be shared with readers across institutions, governments, researchers, students, and the industry. The journal emphasizes fundamental contributions on new methodologies, discoveries and techniques that have general applicability and which form the basis for network based modelling, knowledge discovery, knowledge sharing and decision support to the benefit of patients, healthcare professionals and society in traditional and advanced emerging settings, including eHealth and mHealth .