分析患者报告结果的临床意义变化:关于协变量调整的新见解。

IF 1.2 4区 医学 Q4 PHARMACOLOGY & PHARMACY
Joseph C Cappelleri, Paul R Cislo
{"title":"分析患者报告结果的临床意义变化:关于协变量调整的新见解。","authors":"Joseph C Cappelleri, Paul R Cislo","doi":"10.1080/10543406.2023.2237115","DOIUrl":null,"url":null,"abstract":"<p><p>Determining clinically meaningful change (CMC) in a patient-reported (PRO) measure is central to its existence in gauging how patients feel and function, especially for evaluating a treatment effect. Anchor-based approaches are recommended to estimate a CMC threshold on a PRO measure. Determination of CMC involves linking changes or differences in the target PRO measure to that in an external (anchor) measure that is easier to interpret than and appreciably associated with the PRO measure. One type of anchor-based approach for CMC is the \"mean change method\" where the mean change in score of the target PRO measure within a particular anchor transition level (e.g. one-category improvement) is subtracted from the mean change in score of within an adjacent anchor category (e.g. no change category). In the literature, the mean change method has been applied with and without an adjustment for the baseline scores for the PRO of interest. This article provides the analytic rationale and conceptual justification for keeping the analysis unadjusted and not controlling for baseline PRO scores. Two illustrative examples are highlighted. The current research is essentially a variation of Lord's paradox (where whether to adjust for a baseline variable depends on the research question) placed in a new context. Once the adjustment is made, the resulting CMC estimate reflects an artificial case where the anchor transition levels are forced to have the same average baseline PRO score. The unadjusted estimate acknowledges that the anchor transition levels are naturally occurring (not randomized) groups and thus maintains external validity.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"812-825"},"PeriodicalIF":1.2000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Clinically Meaningful Change on Patient-Reported Outcomes: Renewed Insights About Covariate Adjustment.\",\"authors\":\"Joseph C Cappelleri, Paul R Cislo\",\"doi\":\"10.1080/10543406.2023.2237115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Determining clinically meaningful change (CMC) in a patient-reported (PRO) measure is central to its existence in gauging how patients feel and function, especially for evaluating a treatment effect. Anchor-based approaches are recommended to estimate a CMC threshold on a PRO measure. Determination of CMC involves linking changes or differences in the target PRO measure to that in an external (anchor) measure that is easier to interpret than and appreciably associated with the PRO measure. One type of anchor-based approach for CMC is the \\\"mean change method\\\" where the mean change in score of the target PRO measure within a particular anchor transition level (e.g. one-category improvement) is subtracted from the mean change in score of within an adjacent anchor category (e.g. no change category). In the literature, the mean change method has been applied with and without an adjustment for the baseline scores for the PRO of interest. This article provides the analytic rationale and conceptual justification for keeping the analysis unadjusted and not controlling for baseline PRO scores. Two illustrative examples are highlighted. The current research is essentially a variation of Lord's paradox (where whether to adjust for a baseline variable depends on the research question) placed in a new context. Once the adjustment is made, the resulting CMC estimate reflects an artificial case where the anchor transition levels are forced to have the same average baseline PRO score. The unadjusted estimate acknowledges that the anchor transition levels are naturally occurring (not randomized) groups and thus maintains external validity.</p>\",\"PeriodicalId\":54870,\"journal\":{\"name\":\"Journal of Biopharmaceutical Statistics\",\"volume\":\" \",\"pages\":\"812-825\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biopharmaceutical Statistics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10543406.2023.2237115\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2023.2237115","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/1 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

在患者报告(PRO)测量中确定临床有意义的变化(CMC)是衡量患者感觉和功能的核心,特别是评估治疗效果。建议使用基于锚点的方法来估计PRO测量的CMC阈值。CMC的确定涉及将目标PRO测量的变化或差异与外部(锚定)测量的变化或差异联系起来,外部(锚定)测量比PRO测量更容易解释并明显与PRO测量相关。CMC的一种基于锚点的方法是“平均变化法”,即在特定锚点过渡水平(例如一类改进)内的目标PRO测量得分的平均变化从相邻锚点类别(例如无变化类别)内的得分平均变化中减去。在文献中,对于感兴趣的PRO的基线分数,在有或没有调整的情况下都应用了平均变化法。本文提供了保持分析不调整和不控制基线PRO分数的分析原理和概念上的理由。重点介绍了两个说明性的例子。当前的研究本质上是洛德悖论(是否调整基线变量取决于研究问题)在新背景下的变化。一旦进行调整,所得到的CMC估计反映了一个人为的情况,即锚点过渡水平被迫具有相同的平均基线PRO分数。未经调整的估计承认锚点过渡水平是自然发生的(不是随机的)群体,因此保持外部有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of Clinically Meaningful Change on Patient-Reported Outcomes: Renewed Insights About Covariate Adjustment.

Determining clinically meaningful change (CMC) in a patient-reported (PRO) measure is central to its existence in gauging how patients feel and function, especially for evaluating a treatment effect. Anchor-based approaches are recommended to estimate a CMC threshold on a PRO measure. Determination of CMC involves linking changes or differences in the target PRO measure to that in an external (anchor) measure that is easier to interpret than and appreciably associated with the PRO measure. One type of anchor-based approach for CMC is the "mean change method" where the mean change in score of the target PRO measure within a particular anchor transition level (e.g. one-category improvement) is subtracted from the mean change in score of within an adjacent anchor category (e.g. no change category). In the literature, the mean change method has been applied with and without an adjustment for the baseline scores for the PRO of interest. This article provides the analytic rationale and conceptual justification for keeping the analysis unadjusted and not controlling for baseline PRO scores. Two illustrative examples are highlighted. The current research is essentially a variation of Lord's paradox (where whether to adjust for a baseline variable depends on the research question) placed in a new context. Once the adjustment is made, the resulting CMC estimate reflects an artificial case where the anchor transition levels are forced to have the same average baseline PRO score. The unadjusted estimate acknowledges that the anchor transition levels are naturally occurring (not randomized) groups and thus maintains external validity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biopharmaceutical Statistics
Journal of Biopharmaceutical Statistics 医学-统计学与概率论
CiteScore
2.50
自引率
18.20%
发文量
71
审稿时长
6-12 weeks
期刊介绍: The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers: Drug, device, and biological research and development; Drug screening and drug design; Assessment of pharmacological activity; Pharmaceutical formulation and scale-up; Preclinical safety assessment; Bioavailability, bioequivalence, and pharmacokinetics; Phase, I, II, and III clinical development including complex innovative designs; Premarket approval assessment of clinical safety; Postmarketing surveillance; Big data and artificial intelligence and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信