Margot W L Morssinkhof, Ysbrand D van der Werf, Odile A van den Heuvel, Daan A van den Ende, Karin van der Tuuk, Martin den Heijer, Birit F P Broekman
{"title":"性激素使用对跨性别人群睡眠结构的影响","authors":"Margot W L Morssinkhof, Ysbrand D van der Werf, Odile A van den Heuvel, Daan A van den Ende, Karin van der Tuuk, Martin den Heijer, Birit F P Broekman","doi":"10.1093/sleep/zsad249","DOIUrl":null,"url":null,"abstract":"<p><strong>Study objectives: </strong>Sex differences in sleep architecture are well-documented, with females experiencing longer total sleep time, more slow wave sleep (SWS), and shorter Rapid Eye Movement (REM) sleep duration than males. Although studies imply that sex hormones could affect sleep, research on exogenous sex hormones on sleep architecture is still inconclusive. This study examined sleep architecture changes in transgender individuals after 3 months of gender-affirming hormone therapy (GAHT).</p><p><strong>Methods: </strong>We assessed sleep architecture in 73 transgender individuals: 38 transmasculine participants who started using testosterone and 35 transfeminine participants who started using estrogens and antiandrogens. Sleep architecture was measured before GAHT and after 3 months of GAHT for 7 nights using an ambulatory single-electrode sleep EEG device. Changes in sleep architecture were analyzed using linear mixed models, and non-normally distributed outcomes were log-transformed and reported as percentages.</p><p><strong>Results: </strong>In transmasculine participants, SWS decreased by 7 minutes (95% CI: -12; -3) and 1.7% (95% CI: -3%; -0.5%), REM sleep latency decreased by 39% (95% CI: -52%; -22%) and REM sleep duration increased by 17 minutes (95% CI: 7; 26) after 3 months of GAHT. In transfeminine participants, sleep architecture showed no significant changes after 3 months of GAHT.</p><p><strong>Conclusions: </strong>Sleep architecture changes after 3 months of masculinizing GAHT in line with sleep in cisgender males, while it shows no changes after feminizing GAHT. The sex-specific nature of these changes raises new questions about sex hormones and sleep. Future research should focus on studying possible underlying neural mechanisms and clinical consequences of these changes.</p>","PeriodicalId":49514,"journal":{"name":"Sleep","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10636253/pdf/","citationCount":"0","resultStr":"{\"title\":\"Influence of sex hormone use on sleep architecture in a transgender cohort.\",\"authors\":\"Margot W L Morssinkhof, Ysbrand D van der Werf, Odile A van den Heuvel, Daan A van den Ende, Karin van der Tuuk, Martin den Heijer, Birit F P Broekman\",\"doi\":\"10.1093/sleep/zsad249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Study objectives: </strong>Sex differences in sleep architecture are well-documented, with females experiencing longer total sleep time, more slow wave sleep (SWS), and shorter Rapid Eye Movement (REM) sleep duration than males. Although studies imply that sex hormones could affect sleep, research on exogenous sex hormones on sleep architecture is still inconclusive. This study examined sleep architecture changes in transgender individuals after 3 months of gender-affirming hormone therapy (GAHT).</p><p><strong>Methods: </strong>We assessed sleep architecture in 73 transgender individuals: 38 transmasculine participants who started using testosterone and 35 transfeminine participants who started using estrogens and antiandrogens. Sleep architecture was measured before GAHT and after 3 months of GAHT for 7 nights using an ambulatory single-electrode sleep EEG device. Changes in sleep architecture were analyzed using linear mixed models, and non-normally distributed outcomes were log-transformed and reported as percentages.</p><p><strong>Results: </strong>In transmasculine participants, SWS decreased by 7 minutes (95% CI: -12; -3) and 1.7% (95% CI: -3%; -0.5%), REM sleep latency decreased by 39% (95% CI: -52%; -22%) and REM sleep duration increased by 17 minutes (95% CI: 7; 26) after 3 months of GAHT. In transfeminine participants, sleep architecture showed no significant changes after 3 months of GAHT.</p><p><strong>Conclusions: </strong>Sleep architecture changes after 3 months of masculinizing GAHT in line with sleep in cisgender males, while it shows no changes after feminizing GAHT. The sex-specific nature of these changes raises new questions about sex hormones and sleep. Future research should focus on studying possible underlying neural mechanisms and clinical consequences of these changes.</p>\",\"PeriodicalId\":49514,\"journal\":{\"name\":\"Sleep\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10636253/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sleep\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/sleep/zsad249\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sleep","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/sleep/zsad249","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Influence of sex hormone use on sleep architecture in a transgender cohort.
Study objectives: Sex differences in sleep architecture are well-documented, with females experiencing longer total sleep time, more slow wave sleep (SWS), and shorter Rapid Eye Movement (REM) sleep duration than males. Although studies imply that sex hormones could affect sleep, research on exogenous sex hormones on sleep architecture is still inconclusive. This study examined sleep architecture changes in transgender individuals after 3 months of gender-affirming hormone therapy (GAHT).
Methods: We assessed sleep architecture in 73 transgender individuals: 38 transmasculine participants who started using testosterone and 35 transfeminine participants who started using estrogens and antiandrogens. Sleep architecture was measured before GAHT and after 3 months of GAHT for 7 nights using an ambulatory single-electrode sleep EEG device. Changes in sleep architecture were analyzed using linear mixed models, and non-normally distributed outcomes were log-transformed and reported as percentages.
Results: In transmasculine participants, SWS decreased by 7 minutes (95% CI: -12; -3) and 1.7% (95% CI: -3%; -0.5%), REM sleep latency decreased by 39% (95% CI: -52%; -22%) and REM sleep duration increased by 17 minutes (95% CI: 7; 26) after 3 months of GAHT. In transfeminine participants, sleep architecture showed no significant changes after 3 months of GAHT.
Conclusions: Sleep architecture changes after 3 months of masculinizing GAHT in line with sleep in cisgender males, while it shows no changes after feminizing GAHT. The sex-specific nature of these changes raises new questions about sex hormones and sleep. Future research should focus on studying possible underlying neural mechanisms and clinical consequences of these changes.
期刊介绍:
SLEEP® publishes findings from studies conducted at any level of analysis, including:
Genes
Molecules
Cells
Physiology
Neural systems and circuits
Behavior and cognition
Self-report
SLEEP® publishes articles that use a wide variety of scientific approaches and address a broad range of topics. These may include, but are not limited to:
Basic and neuroscience studies of sleep and circadian mechanisms
In vitro and animal models of sleep, circadian rhythms, and human disorders
Pre-clinical human investigations, including the measurement and manipulation of sleep and circadian rhythms
Studies in clinical or population samples. These may address factors influencing sleep and circadian rhythms (e.g., development and aging, and social and environmental influences) and relationships between sleep, circadian rhythms, health, and disease
Clinical trials, epidemiology studies, implementation, and dissemination research.