{"title":"血友病的基因治疗。","authors":"Amit C Nathwani","doi":"10.1182/hematology.2022000388","DOIUrl":null,"url":null,"abstract":"<p><p>The cloning of the factor VIII (FVIII) and factor IX (FIX) genes in the 1980s has led to a succession of clinical advances starting with the advent of molecular diagnostic for hemophilia, followed by the development of recombinant clotting factor replacement therapy. Now gene therapy beckons on the back of decades of research that has brought us to the final stages of the approval of 2 products in Europe and United States, thus heralding a new era in the treatment of the hemophilias. Valoctocogene roxaparvovec, the first gene therapy for treatment of hemophilia A, has been granted conditional marketing authorization in Europe. Another approach (etranacogene dezaparvovec, AMT-061) for hemophilia B is also under review by regulators. There are several other gene therapy approaches in earlier stages of development. These approaches entail a one-off infusion of a genetically modified adeno-associated virus (AAV) engineered to deliver either the FVIII or FIX gene to the liver, leading to the continuous endogenous synthesis and secretion of the missing coagulation factor into the circulation by the hepatocytes, thus preventing or reducing bleeding episodes. Ongoing observations show sustained clinical benefit of gene therapy for >5 years following a single administration of an AAV vector without long-lasting or late toxicities. An asymptomatic, self-limiting, immune-mediated rise in alanine aminotransferase is commonly observed within the first 12 months after gene transfer that has the potential to eliminate the transduced hepatocytes in the absence of treatment with immunosuppressive agents such as corticosteroids. The current state of this exciting and rapidly evolving field, as well as the challenges that need to be overcome for the widespread adaptation of this new treatment paradigm, is the subject of this review.</p>","PeriodicalId":12973,"journal":{"name":"Hematology. American Society of Hematology. Education Program","volume":"2022 1","pages":"569-578"},"PeriodicalIF":2.9000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9821304/pdf/hem.2022000388.pdf","citationCount":"0","resultStr":"{\"title\":\"Gene therapy for hemophilia.\",\"authors\":\"Amit C Nathwani\",\"doi\":\"10.1182/hematology.2022000388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The cloning of the factor VIII (FVIII) and factor IX (FIX) genes in the 1980s has led to a succession of clinical advances starting with the advent of molecular diagnostic for hemophilia, followed by the development of recombinant clotting factor replacement therapy. Now gene therapy beckons on the back of decades of research that has brought us to the final stages of the approval of 2 products in Europe and United States, thus heralding a new era in the treatment of the hemophilias. Valoctocogene roxaparvovec, the first gene therapy for treatment of hemophilia A, has been granted conditional marketing authorization in Europe. Another approach (etranacogene dezaparvovec, AMT-061) for hemophilia B is also under review by regulators. There are several other gene therapy approaches in earlier stages of development. These approaches entail a one-off infusion of a genetically modified adeno-associated virus (AAV) engineered to deliver either the FVIII or FIX gene to the liver, leading to the continuous endogenous synthesis and secretion of the missing coagulation factor into the circulation by the hepatocytes, thus preventing or reducing bleeding episodes. Ongoing observations show sustained clinical benefit of gene therapy for >5 years following a single administration of an AAV vector without long-lasting or late toxicities. An asymptomatic, self-limiting, immune-mediated rise in alanine aminotransferase is commonly observed within the first 12 months after gene transfer that has the potential to eliminate the transduced hepatocytes in the absence of treatment with immunosuppressive agents such as corticosteroids. The current state of this exciting and rapidly evolving field, as well as the challenges that need to be overcome for the widespread adaptation of this new treatment paradigm, is the subject of this review.</p>\",\"PeriodicalId\":12973,\"journal\":{\"name\":\"Hematology. American Society of Hematology. Education Program\",\"volume\":\"2022 1\",\"pages\":\"569-578\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9821304/pdf/hem.2022000388.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hematology. American Society of Hematology. Education Program\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.1182/hematology.2022000388\",\"RegionNum\":3,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hematology. American Society of Hematology. Education Program","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1182/hematology.2022000388","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
The cloning of the factor VIII (FVIII) and factor IX (FIX) genes in the 1980s has led to a succession of clinical advances starting with the advent of molecular diagnostic for hemophilia, followed by the development of recombinant clotting factor replacement therapy. Now gene therapy beckons on the back of decades of research that has brought us to the final stages of the approval of 2 products in Europe and United States, thus heralding a new era in the treatment of the hemophilias. Valoctocogene roxaparvovec, the first gene therapy for treatment of hemophilia A, has been granted conditional marketing authorization in Europe. Another approach (etranacogene dezaparvovec, AMT-061) for hemophilia B is also under review by regulators. There are several other gene therapy approaches in earlier stages of development. These approaches entail a one-off infusion of a genetically modified adeno-associated virus (AAV) engineered to deliver either the FVIII or FIX gene to the liver, leading to the continuous endogenous synthesis and secretion of the missing coagulation factor into the circulation by the hepatocytes, thus preventing or reducing bleeding episodes. Ongoing observations show sustained clinical benefit of gene therapy for >5 years following a single administration of an AAV vector without long-lasting or late toxicities. An asymptomatic, self-limiting, immune-mediated rise in alanine aminotransferase is commonly observed within the first 12 months after gene transfer that has the potential to eliminate the transduced hepatocytes in the absence of treatment with immunosuppressive agents such as corticosteroids. The current state of this exciting and rapidly evolving field, as well as the challenges that need to be overcome for the widespread adaptation of this new treatment paradigm, is the subject of this review.