原位重组制备的掺br铜纳米颗粒用于CO2的高效电化学还原成甲酸

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Xiaoxiao Wang , Awei Guo , Yunlong Wang , Zhipeng Chen , Yuxuan Guo , Haijiao Xie , Weilong Shan , Junjie Zhang
{"title":"原位重组制备的掺br铜纳米颗粒用于CO2的高效电化学还原成甲酸","authors":"Xiaoxiao Wang ,&nbsp;Awei Guo ,&nbsp;Yunlong Wang ,&nbsp;Zhipeng Chen ,&nbsp;Yuxuan Guo ,&nbsp;Haijiao Xie ,&nbsp;Weilong Shan ,&nbsp;Junjie Zhang","doi":"10.1016/j.jcis.2023.09.072","DOIUrl":null,"url":null,"abstract":"<div><p>Electrochemical conversion of CO<sub>2</sub><span><span> into chemical feedstock, such as an energy-dense liquid product (formate), is desirable to address the excessive emission of </span>greenhouse gases and store energy. Cu-based catalysts exhibit great advantages in electrochemical CO</span><sub>2</sub> reduction reaction (eCO<sub>2</sub><span>RR) due to their low cost and high abundance, but suffer from low selectivity<span> of formate. In this work, a facile one-pot approach is developed to synthesize CuBr nanoparticle (CuBr NP) that can conduct in situ dynamic restructuring during eCO</span></span><sub>2</sub>RR to generate Br-doped Cu NP. The in situ-formed Br-doped Cu NP can afford up to 91.6% Faradaic efficiency (FE) for formate production with a partial current density of 15.1 mA·cm<sup>−2</sup> at −0.94 V <em>vs.</em><span> reversible hydrogen electrode (RHE) in an H-type cell. Moreover, Br-doped Cu NP can deliver excellent long-term stability for up to 25 h. The first-principles density functional theory (DFT) calculations show that the doped Br can regulate the electronic structure of Cu active sites to optimize the adsorption of the HCOO* intermediate, greatly hindering the formation of CO and H</span><sub>2</sub>. This work provides a strategy for electronic modulation of metal active site and suggests new opportunities in high selectivity for electrocatalytic reduction of CO<sub>2</sub> to formate over Cu-based catalysts.</p></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"653 ","pages":"Pages 238-245"},"PeriodicalIF":9.4000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Br-doped Cu nanoparticle formed by in situ restructuring for highly efficient electrochemical reduction of CO2 to formate\",\"authors\":\"Xiaoxiao Wang ,&nbsp;Awei Guo ,&nbsp;Yunlong Wang ,&nbsp;Zhipeng Chen ,&nbsp;Yuxuan Guo ,&nbsp;Haijiao Xie ,&nbsp;Weilong Shan ,&nbsp;Junjie Zhang\",\"doi\":\"10.1016/j.jcis.2023.09.072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Electrochemical conversion of CO<sub>2</sub><span><span> into chemical feedstock, such as an energy-dense liquid product (formate), is desirable to address the excessive emission of </span>greenhouse gases and store energy. Cu-based catalysts exhibit great advantages in electrochemical CO</span><sub>2</sub> reduction reaction (eCO<sub>2</sub><span>RR) due to their low cost and high abundance, but suffer from low selectivity<span> of formate. In this work, a facile one-pot approach is developed to synthesize CuBr nanoparticle (CuBr NP) that can conduct in situ dynamic restructuring during eCO</span></span><sub>2</sub>RR to generate Br-doped Cu NP. The in situ-formed Br-doped Cu NP can afford up to 91.6% Faradaic efficiency (FE) for formate production with a partial current density of 15.1 mA·cm<sup>−2</sup> at −0.94 V <em>vs.</em><span> reversible hydrogen electrode (RHE) in an H-type cell. Moreover, Br-doped Cu NP can deliver excellent long-term stability for up to 25 h. The first-principles density functional theory (DFT) calculations show that the doped Br can regulate the electronic structure of Cu active sites to optimize the adsorption of the HCOO* intermediate, greatly hindering the formation of CO and H</span><sub>2</sub>. This work provides a strategy for electronic modulation of metal active site and suggests new opportunities in high selectivity for electrocatalytic reduction of CO<sub>2</sub> to formate over Cu-based catalysts.</p></div>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":\"653 \",\"pages\":\"Pages 238-245\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2023-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021979723017691\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979723017691","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1

摘要

电化学将二氧化碳转化为化学原料,如能量密集的液体产品(甲酸盐),是解决温室气体过度排放和储存能量的理想方法。cu基催化剂成本低、丰度高,在电化学CO2还原反应(eCO2RR)中具有很大的优势,但其对甲酸盐的选择性较低。在这项工作中,开发了一种简单的一锅法来合成cur纳米颗粒(cur NP),该纳米颗粒可以在eCO2RR过程中进行原位动态重组以生成br掺杂的Cu NP。与h型电池中的可逆氢电极(RHE)相比,原位形成的br掺杂Cu NP在- 0.94 V下的偏电流密度为15.1 mA·cm−2时,可提供高达91.6%的法拉第效率(FE)。此外,掺杂Br的Cu NP具有长达25 h的长期稳定性。第一原理密度泛函理论(DFT)计算表明,掺杂Br可以调节Cu活性位点的电子结构,优化HCOO*中间体的吸附,极大地阻碍了CO和H2的形成。这项工作为金属活性位点的电子调制提供了一种策略,并为铜基催化剂上高选择性电催化还原CO2生成甲酸提供了新的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Br-doped Cu nanoparticle formed by in situ restructuring for highly efficient electrochemical reduction of CO2 to formate

Br-doped Cu nanoparticle formed by in situ restructuring for highly efficient electrochemical reduction of CO2 to formate

Electrochemical conversion of CO2 into chemical feedstock, such as an energy-dense liquid product (formate), is desirable to address the excessive emission of greenhouse gases and store energy. Cu-based catalysts exhibit great advantages in electrochemical CO2 reduction reaction (eCO2RR) due to their low cost and high abundance, but suffer from low selectivity of formate. In this work, a facile one-pot approach is developed to synthesize CuBr nanoparticle (CuBr NP) that can conduct in situ dynamic restructuring during eCO2RR to generate Br-doped Cu NP. The in situ-formed Br-doped Cu NP can afford up to 91.6% Faradaic efficiency (FE) for formate production with a partial current density of 15.1 mA·cm−2 at −0.94 V vs. reversible hydrogen electrode (RHE) in an H-type cell. Moreover, Br-doped Cu NP can deliver excellent long-term stability for up to 25 h. The first-principles density functional theory (DFT) calculations show that the doped Br can regulate the electronic structure of Cu active sites to optimize the adsorption of the HCOO* intermediate, greatly hindering the formation of CO and H2. This work provides a strategy for electronic modulation of metal active site and suggests new opportunities in high selectivity for electrocatalytic reduction of CO2 to formate over Cu-based catalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信