{"title":"西地那非可增加全身给药后的 AAV9 转导,并增强 AAV9-dystrophin 对 mdx 小鼠的治疗效果。","authors":"Kaiyi Zhou, Meng Yuan, Jiabao Sun, Feixu Zhang, Xiaoying Zong, Zhanao Li, Dingyue Tang, Lichen Zhou, Jing Zheng, Xiao Xiao, Xia Wu","doi":"10.1038/s41434-023-00411-3","DOIUrl":null,"url":null,"abstract":"Adeno-associated virus (AAV) vectors have been successfully used to deliver genes for treating rare diseases. However, the systemic administration of high AAV vector doses triggers several adverse effects, including immune response, the asymptomatic elevation of liver transaminase levels, and complement activation. Thus, improving AAV transduction and reducing AAV dosage for treatment is necessary. Recently, we found that a phosphodiesterase-5 inhibitor significantly promoted AAV9 transduction in vitro by regulating the caveolae and macropinocytosis pathways. When AAV9-Gaussian luciferase (AAV9-Gluc) and AAV9-green fluorescent protein (AAV9-GFP) were injected intravenously into mice pre-treated with sildenafil, the expressions of Gluc in the plasma and GFP in muscle tissues significantly increased (P < 0.05). Sildenafil also improved Evans blue permeation in tissues. Additionally, we found that sildenafil promoted Treg proliferation, inhibited B-cell activation, and decreased anti-AAV9 IgG levels (P < 0.05). Furthermore, sildenafil significantly promoted Duchenne muscular dystrophy gene therapy efficacy using AAV9 in mdx mice; it increased micro-dystrophin gene expression, forelimb grip strength, and time spent on the rotarod test, decreased serum creatine kinase levels, and ameliorated histopathology by improving muscle cell morphology and reducing fibrosis (P < 0.05). These results show that sildenafil significantly improved AAV transduction, suppressed the levels of anti-AAV9 IgG, and enhanced the efficacy of gene therapy.","PeriodicalId":12699,"journal":{"name":"Gene Therapy","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sildenafil increases AAV9 transduction after a systemic administration and enhances AAV9-dystrophin therapeutic effect in mdx mice\",\"authors\":\"Kaiyi Zhou, Meng Yuan, Jiabao Sun, Feixu Zhang, Xiaoying Zong, Zhanao Li, Dingyue Tang, Lichen Zhou, Jing Zheng, Xiao Xiao, Xia Wu\",\"doi\":\"10.1038/s41434-023-00411-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adeno-associated virus (AAV) vectors have been successfully used to deliver genes for treating rare diseases. However, the systemic administration of high AAV vector doses triggers several adverse effects, including immune response, the asymptomatic elevation of liver transaminase levels, and complement activation. Thus, improving AAV transduction and reducing AAV dosage for treatment is necessary. Recently, we found that a phosphodiesterase-5 inhibitor significantly promoted AAV9 transduction in vitro by regulating the caveolae and macropinocytosis pathways. When AAV9-Gaussian luciferase (AAV9-Gluc) and AAV9-green fluorescent protein (AAV9-GFP) were injected intravenously into mice pre-treated with sildenafil, the expressions of Gluc in the plasma and GFP in muscle tissues significantly increased (P < 0.05). Sildenafil also improved Evans blue permeation in tissues. Additionally, we found that sildenafil promoted Treg proliferation, inhibited B-cell activation, and decreased anti-AAV9 IgG levels (P < 0.05). Furthermore, sildenafil significantly promoted Duchenne muscular dystrophy gene therapy efficacy using AAV9 in mdx mice; it increased micro-dystrophin gene expression, forelimb grip strength, and time spent on the rotarod test, decreased serum creatine kinase levels, and ameliorated histopathology by improving muscle cell morphology and reducing fibrosis (P < 0.05). These results show that sildenafil significantly improved AAV transduction, suppressed the levels of anti-AAV9 IgG, and enhanced the efficacy of gene therapy.\",\"PeriodicalId\":12699,\"journal\":{\"name\":\"Gene Therapy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gene Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41434-023-00411-3\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene Therapy","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41434-023-00411-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Sildenafil increases AAV9 transduction after a systemic administration and enhances AAV9-dystrophin therapeutic effect in mdx mice
Adeno-associated virus (AAV) vectors have been successfully used to deliver genes for treating rare diseases. However, the systemic administration of high AAV vector doses triggers several adverse effects, including immune response, the asymptomatic elevation of liver transaminase levels, and complement activation. Thus, improving AAV transduction and reducing AAV dosage for treatment is necessary. Recently, we found that a phosphodiesterase-5 inhibitor significantly promoted AAV9 transduction in vitro by regulating the caveolae and macropinocytosis pathways. When AAV9-Gaussian luciferase (AAV9-Gluc) and AAV9-green fluorescent protein (AAV9-GFP) were injected intravenously into mice pre-treated with sildenafil, the expressions of Gluc in the plasma and GFP in muscle tissues significantly increased (P < 0.05). Sildenafil also improved Evans blue permeation in tissues. Additionally, we found that sildenafil promoted Treg proliferation, inhibited B-cell activation, and decreased anti-AAV9 IgG levels (P < 0.05). Furthermore, sildenafil significantly promoted Duchenne muscular dystrophy gene therapy efficacy using AAV9 in mdx mice; it increased micro-dystrophin gene expression, forelimb grip strength, and time spent on the rotarod test, decreased serum creatine kinase levels, and ameliorated histopathology by improving muscle cell morphology and reducing fibrosis (P < 0.05). These results show that sildenafil significantly improved AAV transduction, suppressed the levels of anti-AAV9 IgG, and enhanced the efficacy of gene therapy.
期刊介绍:
Gene Therapy covers both the research and clinical applications of novel therapeutic techniques based on a genetic component. Over the last few decades, significant advances in technologies ranging from identifying novel genetic targets that cause disease through to clinical studies, which show therapeutic benefit, have elevated this multidisciplinary field to the forefront of modern medicine.