Reham G Elfarargy, Mohamed Sedki, Farag A Samhan, Rabeay Y A Hassan, Ibrahim M El-Sherbiny
{"title":"高分子导管和支架表面接枝,防止致病菌形成生物膜。","authors":"Reham G Elfarargy, Mohamed Sedki, Farag A Samhan, Rabeay Y A Hassan, Ibrahim M El-Sherbiny","doi":"10.1186/s43141-023-00545-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Tecothane (medical grade of polyurethane) is strongly involved in the fabrication of metallic and polymeric-based medical devices (e.g., catheters and stents) as they can withstand cardiac cycle-related forces without deforming or failing, and they can mimic tissue behavior. The main problem is microbial contamination and formation of pathogenic biofilms on such solid surfaces within the human body. Accordingly, our hypothesis is the coating of tecothane outer surfaces with antibacterial agents through the electro-deposition or chemical grafting of anti-biofilm agents onto the stent and catheter surfaces.</p><p><strong>Results: </strong>Tecothane is grafted with itaconic acid for cross-linking the polyethyleneimine (PEI) as the protective-active layer. Accordingly, the grafting of poly-itaconic acid onto the Tecothane was achieved by three different methods: wet-chemical approach, electro-polymerization, or by using plasma treatment. The successful modifications were verified using Fourier Transform Infrared (FTIR) spectroscopy, grafting percentage calculations, electrochemical, and microscopic monitoring of biofilm formation. The grafting efficiency of itaconic acid was over 3.2% (w/w) at 60 ℃ after 6 h of the catheter chemical modification. Bio-electrochemical signals of biofilms have been seriously reduced after chemical modification because of the inhibition of biofilm formation (for both Pseudomonas aeruginosa and Staphylococcus aureus) over a period of 9 days.</p><p><strong>Conclusion: </strong>Chemical functionalization of the polyurethane materials with the antimicrobial and anti-biofilm agents led to a significant decrease in the formation of pathogenic biofilms. This promising proof-concept will open the door to explore further surface protection with potential anti-biofilm agents providing better and sustainable productions of stents and catheters biomaterials.</p>","PeriodicalId":74026,"journal":{"name":"Journal, genetic engineering & biotechnology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10501021/pdf/","citationCount":"0","resultStr":"{\"title\":\"Surface grafting of polymeric catheters and stents to prevent biofilm formation of pathogenic bacteria.\",\"authors\":\"Reham G Elfarargy, Mohamed Sedki, Farag A Samhan, Rabeay Y A Hassan, Ibrahim M El-Sherbiny\",\"doi\":\"10.1186/s43141-023-00545-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Tecothane (medical grade of polyurethane) is strongly involved in the fabrication of metallic and polymeric-based medical devices (e.g., catheters and stents) as they can withstand cardiac cycle-related forces without deforming or failing, and they can mimic tissue behavior. The main problem is microbial contamination and formation of pathogenic biofilms on such solid surfaces within the human body. Accordingly, our hypothesis is the coating of tecothane outer surfaces with antibacterial agents through the electro-deposition or chemical grafting of anti-biofilm agents onto the stent and catheter surfaces.</p><p><strong>Results: </strong>Tecothane is grafted with itaconic acid for cross-linking the polyethyleneimine (PEI) as the protective-active layer. Accordingly, the grafting of poly-itaconic acid onto the Tecothane was achieved by three different methods: wet-chemical approach, electro-polymerization, or by using plasma treatment. The successful modifications were verified using Fourier Transform Infrared (FTIR) spectroscopy, grafting percentage calculations, electrochemical, and microscopic monitoring of biofilm formation. The grafting efficiency of itaconic acid was over 3.2% (w/w) at 60 ℃ after 6 h of the catheter chemical modification. Bio-electrochemical signals of biofilms have been seriously reduced after chemical modification because of the inhibition of biofilm formation (for both Pseudomonas aeruginosa and Staphylococcus aureus) over a period of 9 days.</p><p><strong>Conclusion: </strong>Chemical functionalization of the polyurethane materials with the antimicrobial and anti-biofilm agents led to a significant decrease in the formation of pathogenic biofilms. This promising proof-concept will open the door to explore further surface protection with potential anti-biofilm agents providing better and sustainable productions of stents and catheters biomaterials.</p>\",\"PeriodicalId\":74026,\"journal\":{\"name\":\"Journal, genetic engineering & biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10501021/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal, genetic engineering & biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s43141-023-00545-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal, genetic engineering & biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43141-023-00545-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Surface grafting of polymeric catheters and stents to prevent biofilm formation of pathogenic bacteria.
Background: Tecothane (medical grade of polyurethane) is strongly involved in the fabrication of metallic and polymeric-based medical devices (e.g., catheters and stents) as they can withstand cardiac cycle-related forces without deforming or failing, and they can mimic tissue behavior. The main problem is microbial contamination and formation of pathogenic biofilms on such solid surfaces within the human body. Accordingly, our hypothesis is the coating of tecothane outer surfaces with antibacterial agents through the electro-deposition or chemical grafting of anti-biofilm agents onto the stent and catheter surfaces.
Results: Tecothane is grafted with itaconic acid for cross-linking the polyethyleneimine (PEI) as the protective-active layer. Accordingly, the grafting of poly-itaconic acid onto the Tecothane was achieved by three different methods: wet-chemical approach, electro-polymerization, or by using plasma treatment. The successful modifications were verified using Fourier Transform Infrared (FTIR) spectroscopy, grafting percentage calculations, electrochemical, and microscopic monitoring of biofilm formation. The grafting efficiency of itaconic acid was over 3.2% (w/w) at 60 ℃ after 6 h of the catheter chemical modification. Bio-electrochemical signals of biofilms have been seriously reduced after chemical modification because of the inhibition of biofilm formation (for both Pseudomonas aeruginosa and Staphylococcus aureus) over a period of 9 days.
Conclusion: Chemical functionalization of the polyurethane materials with the antimicrobial and anti-biofilm agents led to a significant decrease in the formation of pathogenic biofilms. This promising proof-concept will open the door to explore further surface protection with potential anti-biofilm agents providing better and sustainable productions of stents and catheters biomaterials.