随机博弈中的最佳反应动力学、游戏序列和趋同均衡。

IF 0.6 4区 经济学 Q4 ECONOMICS
Torsten Heinrich, Yoojin Jang, Luca Mungo, Marco Pangallo, Alex Scott, Bassel Tarbush, Samuel Wiese
{"title":"随机博弈中的最佳反应动力学、游戏序列和趋同均衡。","authors":"Torsten Heinrich,&nbsp;Yoojin Jang,&nbsp;Luca Mungo,&nbsp;Marco Pangallo,&nbsp;Alex Scott,&nbsp;Bassel Tarbush,&nbsp;Samuel Wiese","doi":"10.1007/s00182-023-00837-4","DOIUrl":null,"url":null,"abstract":"<p><p>We analyze the performance of the best-response dynamic across all normal-form games using a random games approach. The playing sequence-the order in which players update their actions-is essentially irrelevant in determining whether the dynamic converges to a Nash equilibrium in certain classes of games (e.g. in potential games) but, when evaluated across all possible games, convergence to equilibrium depends on the playing sequence in an extreme way. Our main asymptotic result shows that the best-response dynamic converges to a pure Nash equilibrium in a vanishingly small fraction of all (large) games when players take turns according to a fixed cyclic order. By contrast, when the playing sequence is random, the dynamic converges to a pure Nash equilibrium if one exists in almost all (large) games.</p>","PeriodicalId":14155,"journal":{"name":"International Journal of Game Theory","volume":"52 3","pages":"703-735"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10494490/pdf/","citationCount":"5","resultStr":"{\"title\":\"Best-response dynamics, playing sequences, and convergence to equilibrium in random games.\",\"authors\":\"Torsten Heinrich,&nbsp;Yoojin Jang,&nbsp;Luca Mungo,&nbsp;Marco Pangallo,&nbsp;Alex Scott,&nbsp;Bassel Tarbush,&nbsp;Samuel Wiese\",\"doi\":\"10.1007/s00182-023-00837-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We analyze the performance of the best-response dynamic across all normal-form games using a random games approach. The playing sequence-the order in which players update their actions-is essentially irrelevant in determining whether the dynamic converges to a Nash equilibrium in certain classes of games (e.g. in potential games) but, when evaluated across all possible games, convergence to equilibrium depends on the playing sequence in an extreme way. Our main asymptotic result shows that the best-response dynamic converges to a pure Nash equilibrium in a vanishingly small fraction of all (large) games when players take turns according to a fixed cyclic order. By contrast, when the playing sequence is random, the dynamic converges to a pure Nash equilibrium if one exists in almost all (large) games.</p>\",\"PeriodicalId\":14155,\"journal\":{\"name\":\"International Journal of Game Theory\",\"volume\":\"52 3\",\"pages\":\"703-735\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10494490/pdf/\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Game Theory\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1007/s00182-023-00837-4\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Game Theory","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1007/s00182-023-00837-4","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 5

摘要

我们使用随机博弈方法分析了所有正规博弈中最佳响应动态的表现。游戏顺序,即玩家更新行动的顺序,在决定动态是否在某些类型的游戏(如潜在游戏)中收敛到纳什均衡时,本质上是无关紧要的,但是,当评估所有可能的游戏时,收敛到均衡取决于极端的游戏顺序。我们的主要渐近结果表明,当参与者按照固定的循环顺序轮流时,在所有(大型)博弈的极小部分中,最佳响应动态收敛于纯纳什均衡。相比之下,当游戏序列是随机的,动态收敛到一个纯纳什均衡,如果一个存在于几乎所有(大型)博弈。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Best-response dynamics, playing sequences, and convergence to equilibrium in random games.

Best-response dynamics, playing sequences, and convergence to equilibrium in random games.

Best-response dynamics, playing sequences, and convergence to equilibrium in random games.

Best-response dynamics, playing sequences, and convergence to equilibrium in random games.

We analyze the performance of the best-response dynamic across all normal-form games using a random games approach. The playing sequence-the order in which players update their actions-is essentially irrelevant in determining whether the dynamic converges to a Nash equilibrium in certain classes of games (e.g. in potential games) but, when evaluated across all possible games, convergence to equilibrium depends on the playing sequence in an extreme way. Our main asymptotic result shows that the best-response dynamic converges to a pure Nash equilibrium in a vanishingly small fraction of all (large) games when players take turns according to a fixed cyclic order. By contrast, when the playing sequence is random, the dynamic converges to a pure Nash equilibrium if one exists in almost all (large) games.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Game Theory
International Journal of Game Theory 数学-数学跨学科应用
CiteScore
1.30
自引率
0.00%
发文量
9
审稿时长
1 months
期刊介绍: International Journal of Game Theory is devoted to game theory and its applications. It publishes original research making significant contributions from a methodological, conceptual or mathematical point of view. Survey articles may also be considered if especially useful for the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信