基于生成式深度网络的模式生物概率分段刚性地图集学习。

Amin Nejatbakhsh, Neel Dey, Vivek Venkatachalam, Eviatar Yemini, Liam Paninski, Erdem Varol
{"title":"基于生成式深度网络的模式生物概率分段刚性地图集学习。","authors":"Amin Nejatbakhsh,&nbsp;Neel Dey,&nbsp;Vivek Venkatachalam,&nbsp;Eviatar Yemini,&nbsp;Liam Paninski,&nbsp;Erdem Varol","doi":"10.1007/978-3-031-34048-2_26","DOIUrl":null,"url":null,"abstract":"<p><p>Atlases are crucial to imaging statistics as they enable the standardization of inter-subject and inter-population analyses. While existing atlas estimation methods based on fluid/elastic/diffusion registration yield high-quality results for the human brain, these deformation models do not extend to a variety of other challenging areas of neuroscience such as the anatomy of <i>C. elegans</i> worms and fruit flies. To this end, this work presents a general probabilistic deep network-based framework for atlas estimation and registration which can flexibly incorporate various deformation models and levels of keypoint supervision that can be applied to a wide class of model organisms. Of particular relevance, it also develops a deformable piecewise rigid atlas model which is regularized to preserve inter-observation distances between neighbors. These modeling considerations are shown to improve atlas construction and key-point alignment across a diversity of datasets with small sample sizes including neuron positions in <i>C. elegans</i> hermaphrodites, fluorescence microscopy of male <i>C. elegans</i>, and images of fruit fly wings. Code is accessible at https://github.com/amin-nejat/Deformable-Atlas.</p>","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"13939 ","pages":"332-343"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10358289/pdf/nihms-1910173.pdf","citationCount":"0","resultStr":"{\"title\":\"Learning Probabilistic Piecewise Rigid Atlases of Model Organisms via Generative Deep Networks.\",\"authors\":\"Amin Nejatbakhsh,&nbsp;Neel Dey,&nbsp;Vivek Venkatachalam,&nbsp;Eviatar Yemini,&nbsp;Liam Paninski,&nbsp;Erdem Varol\",\"doi\":\"10.1007/978-3-031-34048-2_26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Atlases are crucial to imaging statistics as they enable the standardization of inter-subject and inter-population analyses. While existing atlas estimation methods based on fluid/elastic/diffusion registration yield high-quality results for the human brain, these deformation models do not extend to a variety of other challenging areas of neuroscience such as the anatomy of <i>C. elegans</i> worms and fruit flies. To this end, this work presents a general probabilistic deep network-based framework for atlas estimation and registration which can flexibly incorporate various deformation models and levels of keypoint supervision that can be applied to a wide class of model organisms. Of particular relevance, it also develops a deformable piecewise rigid atlas model which is regularized to preserve inter-observation distances between neighbors. These modeling considerations are shown to improve atlas construction and key-point alignment across a diversity of datasets with small sample sizes including neuron positions in <i>C. elegans</i> hermaphrodites, fluorescence microscopy of male <i>C. elegans</i>, and images of fruit fly wings. Code is accessible at https://github.com/amin-nejat/Deformable-Atlas.</p>\",\"PeriodicalId\":73379,\"journal\":{\"name\":\"Information processing in medical imaging : proceedings of the ... conference\",\"volume\":\"13939 \",\"pages\":\"332-343\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10358289/pdf/nihms-1910173.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information processing in medical imaging : proceedings of the ... conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-34048-2_26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information processing in medical imaging : proceedings of the ... conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-34048-2_26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

地图集对成像统计至关重要,因为它们使学科间和人口间的分析标准化。虽然现有的基于流体/弹性/扩散配准的图谱估计方法对人脑产生了高质量的结果,但这些变形模型并没有扩展到神经科学的各种其他具有挑战性的领域,如秀丽隐杆线虫和果蝇的解剖。为此,本工作提出了一种基于一般概率深度网络的图谱估计和配准框架,该框架可以灵活地结合各种变形模型和关键点监督水平,可应用于广泛类别的模式生物。特别相关的是,它还开发了一个可变形的分段刚性地图集模型,该模型经过正则化以保持相邻之间的观测距离。这些建模考虑被证明可以改善图谱的构建和关键点对齐,这些数据集包括秀丽隐杆线虫雌雄同体的神经元位置、雄性秀丽隐杆线虫的荧光显微镜和果蝇翅膀的图像。代码可从https://github.com/amin-nejat/Deformable-Atlas访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Probabilistic Piecewise Rigid Atlases of Model Organisms via Generative Deep Networks.

Atlases are crucial to imaging statistics as they enable the standardization of inter-subject and inter-population analyses. While existing atlas estimation methods based on fluid/elastic/diffusion registration yield high-quality results for the human brain, these deformation models do not extend to a variety of other challenging areas of neuroscience such as the anatomy of C. elegans worms and fruit flies. To this end, this work presents a general probabilistic deep network-based framework for atlas estimation and registration which can flexibly incorporate various deformation models and levels of keypoint supervision that can be applied to a wide class of model organisms. Of particular relevance, it also develops a deformable piecewise rigid atlas model which is regularized to preserve inter-observation distances between neighbors. These modeling considerations are shown to improve atlas construction and key-point alignment across a diversity of datasets with small sample sizes including neuron positions in C. elegans hermaphrodites, fluorescence microscopy of male C. elegans, and images of fruit fly wings. Code is accessible at https://github.com/amin-nejat/Deformable-Atlas.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信