{"title":"递归支持向量回归作为情景记忆模型的神经核。","authors":"Christian Leibold","doi":"10.1007/s00422-022-00926-9","DOIUrl":null,"url":null,"abstract":"<p><p>Retrieval of episodic memories requires intrinsic reactivation of neuronal activity patterns. The content of the memories is thereby assumed to be stored in synaptic connections. This paper proposes a theory in which these are the synaptic connections that specifically convey the temporal order information contained in the sequences of a neuronal reservoir to the sensory-motor cortical areas that give rise to the subjective impression of retrieval of sensory motor events. The theory is based on a novel recursive version of support vector regression that allows for efficient continuous learning that is only limited by the representational capacity of the reservoir. The paper argues that hippocampal theta sequences are a potential neural substrate underlying this reservoir. The theory is consistent with confabulations and post hoc alterations of existing memories.</p>","PeriodicalId":55374,"journal":{"name":"Biological Cybernetics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9170657/pdf/","citationCount":"0","resultStr":"{\"title\":\"Neural kernels for recursive support vector regression as a model for episodic memory.\",\"authors\":\"Christian Leibold\",\"doi\":\"10.1007/s00422-022-00926-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Retrieval of episodic memories requires intrinsic reactivation of neuronal activity patterns. The content of the memories is thereby assumed to be stored in synaptic connections. This paper proposes a theory in which these are the synaptic connections that specifically convey the temporal order information contained in the sequences of a neuronal reservoir to the sensory-motor cortical areas that give rise to the subjective impression of retrieval of sensory motor events. The theory is based on a novel recursive version of support vector regression that allows for efficient continuous learning that is only limited by the representational capacity of the reservoir. The paper argues that hippocampal theta sequences are a potential neural substrate underlying this reservoir. The theory is consistent with confabulations and post hoc alterations of existing memories.</p>\",\"PeriodicalId\":55374,\"journal\":{\"name\":\"Biological Cybernetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9170657/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Cybernetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00422-022-00926-9\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Cybernetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00422-022-00926-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
Neural kernels for recursive support vector regression as a model for episodic memory.
Retrieval of episodic memories requires intrinsic reactivation of neuronal activity patterns. The content of the memories is thereby assumed to be stored in synaptic connections. This paper proposes a theory in which these are the synaptic connections that specifically convey the temporal order information contained in the sequences of a neuronal reservoir to the sensory-motor cortical areas that give rise to the subjective impression of retrieval of sensory motor events. The theory is based on a novel recursive version of support vector regression that allows for efficient continuous learning that is only limited by the representational capacity of the reservoir. The paper argues that hippocampal theta sequences are a potential neural substrate underlying this reservoir. The theory is consistent with confabulations and post hoc alterations of existing memories.
期刊介绍:
Biological Cybernetics is an interdisciplinary medium for theoretical and application-oriented aspects of information processing in organisms, including sensory, motor, cognitive, and ecological phenomena. Topics covered include: mathematical modeling of biological systems; computational, theoretical or engineering studies with relevance for understanding biological information processing; and artificial implementation of biological information processing and self-organizing principles. Under the main aspects of performance and function of systems, emphasis is laid on communication between life sciences and technical/theoretical disciplines.