基于卷积神经网络的方法与 LCM 模型在活体磁共振光谱量化方面的比较。

IF 2 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Yu-Long Huang, Yi-Ru Lin, Shang-Yueh Tsai
{"title":"基于卷积神经网络的方法与 LCM 模型在活体磁共振光谱量化方面的比较。","authors":"Yu-Long Huang, Yi-Ru Lin, Shang-Yueh Tsai","doi":"10.1007/s10334-023-01120-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Quantification of metabolites concentrations in institutional unit (IU) is important for inter-subject and long-term comparisons in the applications of magnetic resonance spectroscopy (MRS). Recently, deep learning (DL) algorithms have found a variety of applications on the process of MRS data. A quantification strategy compatible to DL base MRS spectral processing method is, therefore, useful.</p><p><strong>Materials and methods: </strong>This study aims to investigate whether metabolite concentrations quantified using a convolutional neural network (CNN) based method, coupled with a scaling procedure that normalizes spectral signals for CNN input and linear regression, can effectively reflect variations in metabolite concentrations in IU across different brain regions with varying signal-to-noise ratios (SNR) and linewidths (LW). An error index based on standard error (SE) is proposed to indicate the confidence levels associated with metabolite predictions. In vivo MRS spectra were acquired from three brain regions of 43 subjects using a 3T system.</p><p><strong>Results: </strong>The metabolite concentrations in IU of five major metabolites, quantified using CNN and LCModel, exhibit similar ranges with Pearson's correlation coefficients ranging from 0.24 to 0.78. The SE of the metabolites shows a positive correlation with Cramer-Rao lower bound (CRLB) (r=0.46) and  absolute CRLB (r=0.81), calculated by multiplying CRLBs with the quantified metabolite content.</p><p><strong>Conclusion: </strong>In conclusion, the CNN based method with the proposed scaling procedures can be employed to quantify in vivo MRS spectra and derive metabolites concentrations in IU. The SE can be used as error index, indicating predicted uncertainties for metabolites and sharing information similar to the absolute CRLB.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":"477-489"},"PeriodicalIF":2.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of convolutional-neural-networks-based method and LCModel on the quantification of in vivo magnetic resonance spectroscopy.\",\"authors\":\"Yu-Long Huang, Yi-Ru Lin, Shang-Yueh Tsai\",\"doi\":\"10.1007/s10334-023-01120-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Quantification of metabolites concentrations in institutional unit (IU) is important for inter-subject and long-term comparisons in the applications of magnetic resonance spectroscopy (MRS). Recently, deep learning (DL) algorithms have found a variety of applications on the process of MRS data. A quantification strategy compatible to DL base MRS spectral processing method is, therefore, useful.</p><p><strong>Materials and methods: </strong>This study aims to investigate whether metabolite concentrations quantified using a convolutional neural network (CNN) based method, coupled with a scaling procedure that normalizes spectral signals for CNN input and linear regression, can effectively reflect variations in metabolite concentrations in IU across different brain regions with varying signal-to-noise ratios (SNR) and linewidths (LW). An error index based on standard error (SE) is proposed to indicate the confidence levels associated with metabolite predictions. In vivo MRS spectra were acquired from three brain regions of 43 subjects using a 3T system.</p><p><strong>Results: </strong>The metabolite concentrations in IU of five major metabolites, quantified using CNN and LCModel, exhibit similar ranges with Pearson's correlation coefficients ranging from 0.24 to 0.78. The SE of the metabolites shows a positive correlation with Cramer-Rao lower bound (CRLB) (r=0.46) and  absolute CRLB (r=0.81), calculated by multiplying CRLBs with the quantified metabolite content.</p><p><strong>Conclusion: </strong>In conclusion, the CNN based method with the proposed scaling procedures can be employed to quantify in vivo MRS spectra and derive metabolites concentrations in IU. The SE can be used as error index, indicating predicted uncertainties for metabolites and sharing information similar to the absolute CRLB.</p>\",\"PeriodicalId\":18067,\"journal\":{\"name\":\"Magnetic Resonance Materials in Physics, Biology and Medicine\",\"volume\":\" \",\"pages\":\"477-489\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic Resonance Materials in Physics, Biology and Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10334-023-01120-z\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance Materials in Physics, Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10334-023-01120-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

背景:以机构单位(IU)为单位的代谢物浓度定量对于磁共振波谱(MRS)应用中的受试者间比较和长期比较非常重要。最近,深度学习(DL)算法在 MRS 数据处理中得到了广泛应用。因此,一种与 DL 基础 MRS 光谱处理方法兼容的量化策略非常有用:本研究旨在探讨使用基于卷积神经网络(CNN)的方法量化代谢物浓度,再加上将 CNN 输入和线性回归的光谱信号归一化的缩放程序,是否能有效反映信噪比(SNR)和线宽(LW)不同的脑区 IU 中代谢物浓度的变化。我们提出了基于标准误差(SE)的误差指数,以显示与代谢物预测相关的置信度。使用 3T 系统采集了 43 名受试者三个脑区的体内 MRS 图谱:使用 CNN 和 LCModel 量化的五种主要代谢物的代谢物浓度(以 IU 为单位)显示出相似的范围,皮尔逊相关系数从 0.24 到 0.78 不等。代谢物的 SE 与 Cramer-Rao 下限(CRLB)(r=0.46)和绝对 CRLB(r=0.81)呈正相关,绝对 CRLB 是通过将 CRLB 与量化的代谢物含量相乘计算得出的:总之,基于 CNN 的方法与建议的缩放程序可用于量化体内 MRS 光谱并得出以 IU 为单位的代谢物浓度。SE 可用作误差指数,显示代谢物的预测不确定性,并共享与绝对 CRLB 相似的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Comparison of convolutional-neural-networks-based method and LCModel on the quantification of in vivo magnetic resonance spectroscopy.

Comparison of convolutional-neural-networks-based method and LCModel on the quantification of in vivo magnetic resonance spectroscopy.

Background: Quantification of metabolites concentrations in institutional unit (IU) is important for inter-subject and long-term comparisons in the applications of magnetic resonance spectroscopy (MRS). Recently, deep learning (DL) algorithms have found a variety of applications on the process of MRS data. A quantification strategy compatible to DL base MRS spectral processing method is, therefore, useful.

Materials and methods: This study aims to investigate whether metabolite concentrations quantified using a convolutional neural network (CNN) based method, coupled with a scaling procedure that normalizes spectral signals for CNN input and linear regression, can effectively reflect variations in metabolite concentrations in IU across different brain regions with varying signal-to-noise ratios (SNR) and linewidths (LW). An error index based on standard error (SE) is proposed to indicate the confidence levels associated with metabolite predictions. In vivo MRS spectra were acquired from three brain regions of 43 subjects using a 3T system.

Results: The metabolite concentrations in IU of five major metabolites, quantified using CNN and LCModel, exhibit similar ranges with Pearson's correlation coefficients ranging from 0.24 to 0.78. The SE of the metabolites shows a positive correlation with Cramer-Rao lower bound (CRLB) (r=0.46) and  absolute CRLB (r=0.81), calculated by multiplying CRLBs with the quantified metabolite content.

Conclusion: In conclusion, the CNN based method with the proposed scaling procedures can be employed to quantify in vivo MRS spectra and derive metabolites concentrations in IU. The SE can be used as error index, indicating predicted uncertainties for metabolites and sharing information similar to the absolute CRLB.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
58
审稿时长
>12 weeks
期刊介绍: MAGMA is a multidisciplinary international journal devoted to the publication of articles on all aspects of magnetic resonance techniques and their applications in medicine and biology. MAGMA currently publishes research papers, reviews, letters to the editor, and commentaries, six times a year. The subject areas covered by MAGMA include: advances in materials, hardware and software in magnetic resonance technology, new developments and results in research and practical applications of magnetic resonance imaging and spectroscopy related to biology and medicine, study of animal models and intact cells using magnetic resonance, reports of clinical trials on humans and clinical validation of magnetic resonance protocols.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信