N-乙酰转移酶2单倍型改变了血脂异常和膀胱癌症的风险。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Accounts of Chemical Research Pub Date : 2023-08-01 Epub Date: 2023-05-29 DOI:10.1097/FPC.0000000000000500
Kyung U Hong, David W Hein
{"title":"N-乙酰转移酶2单倍型改变了血脂异常和膀胱癌症的风险。","authors":"Kyung U Hong, David W Hein","doi":"10.1097/FPC.0000000000000500","DOIUrl":null,"url":null,"abstract":"<p><p>A novel haplotype in N -acetyltransferase 2 ( NAT2 ) composed of seven non-coding variants (rs1495741, rs4921913, rs4921914, rs4921915, rs146812806, rs35246381, and rs35570672) has been linked to dyslipidemia by multiple, independent genome-wide association studies. The haplotype is located approximately 14 kb downstream of NAT2-coding region (ch8:18,272,377-18,272,881; GRCh38/hg38) and represents a non-coding, intergenic haplotype. Interestingly, the same dyslipidemia NAT2 haplotype is also linked to urinary bladder cancer risk. Dyslipidemia risk alleles are associated with rapid acetylator phenotype, whereas bladder cancer risk alleles are associated with slow acetylator, suggesting that the level of systemic NAT2 activity modifies the risk of these pathologies. We speculate that rs1495741 (and its associated haplotype) belongs to a distal regulatory element of human NAT2 gene (e.g., enhancer or silencer), and the genetic variation at the newly discovered haplotype results in a differential level of NAT2 gene expression. Understanding how this NAT2 haplotype contributes to not only urinary bladder cancer but also to dyslipidemia will ultimately help devise strategies to identify and protect susceptible individuals.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10524719/pdf/","citationCount":"0","resultStr":"{\"title\":\"N -acetyltransferase 2 haplotype modifies risks for both dyslipidemia and urinary bladder cancer.\",\"authors\":\"Kyung U Hong, David W Hein\",\"doi\":\"10.1097/FPC.0000000000000500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A novel haplotype in N -acetyltransferase 2 ( NAT2 ) composed of seven non-coding variants (rs1495741, rs4921913, rs4921914, rs4921915, rs146812806, rs35246381, and rs35570672) has been linked to dyslipidemia by multiple, independent genome-wide association studies. The haplotype is located approximately 14 kb downstream of NAT2-coding region (ch8:18,272,377-18,272,881; GRCh38/hg38) and represents a non-coding, intergenic haplotype. Interestingly, the same dyslipidemia NAT2 haplotype is also linked to urinary bladder cancer risk. Dyslipidemia risk alleles are associated with rapid acetylator phenotype, whereas bladder cancer risk alleles are associated with slow acetylator, suggesting that the level of systemic NAT2 activity modifies the risk of these pathologies. We speculate that rs1495741 (and its associated haplotype) belongs to a distal regulatory element of human NAT2 gene (e.g., enhancer or silencer), and the genetic variation at the newly discovered haplotype results in a differential level of NAT2 gene expression. Understanding how this NAT2 haplotype contributes to not only urinary bladder cancer but also to dyslipidemia will ultimately help devise strategies to identify and protect susceptible individuals.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10524719/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/FPC.0000000000000500\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/5/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/FPC.0000000000000500","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

一种新的N-乙酰基转移酶2(NAT2)单倍型由七个非编码变体(rs1495741、rs4921913、rs4921914、rs4921915、rs146812806、rs35246381和rs35570672)组成,已通过多项独立的全基因组关联研究与血脂异常相关。单倍型大约位于14 NAT2编码区下游的kb(ch8:18272377-18272881;GRCh38/hg38),并且代表非编码的基因间单倍型。有趣的是,同样的血脂异常NAT2单倍型也与膀胱癌症风险有关。血脂异常风险等位基因与快速乙酰化表型相关,而膀胱癌症风险等位突变与缓慢乙酰化表型有关,表明全身NAT2活性水平改变了这些病理的风险。我们推测rs1495741(及其相关单倍型)属于人类NAT2基因的远端调控元件(如增强子或消音器),新发现的单倍型的遗传变异导致NAT2基因表达水平的差异。了解这种NAT2单倍型如何不仅导致膀胱癌症,而且导致血脂异常,最终将有助于制定识别和保护易感个体的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
N -acetyltransferase 2 haplotype modifies risks for both dyslipidemia and urinary bladder cancer.

A novel haplotype in N -acetyltransferase 2 ( NAT2 ) composed of seven non-coding variants (rs1495741, rs4921913, rs4921914, rs4921915, rs146812806, rs35246381, and rs35570672) has been linked to dyslipidemia by multiple, independent genome-wide association studies. The haplotype is located approximately 14 kb downstream of NAT2-coding region (ch8:18,272,377-18,272,881; GRCh38/hg38) and represents a non-coding, intergenic haplotype. Interestingly, the same dyslipidemia NAT2 haplotype is also linked to urinary bladder cancer risk. Dyslipidemia risk alleles are associated with rapid acetylator phenotype, whereas bladder cancer risk alleles are associated with slow acetylator, suggesting that the level of systemic NAT2 activity modifies the risk of these pathologies. We speculate that rs1495741 (and its associated haplotype) belongs to a distal regulatory element of human NAT2 gene (e.g., enhancer or silencer), and the genetic variation at the newly discovered haplotype results in a differential level of NAT2 gene expression. Understanding how this NAT2 haplotype contributes to not only urinary bladder cancer but also to dyslipidemia will ultimately help devise strategies to identify and protect susceptible individuals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信