P-DOR,一个使用基因组学重建细菌爆发的易于使用的管道。

IF 4.4 3区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Gherard Batisti Biffignandi, Greta Bellinzona, Greta Petazzoni, Davide Sassera, Gian Vincenzo Zuccotti, Claudio Bandi, Fausto Baldanti, Francesco Comandatore, Stefano Gaiarsa
{"title":"P-DOR,一个使用基因组学重建细菌爆发的易于使用的管道。","authors":"Gherard Batisti Biffignandi,&nbsp;Greta Bellinzona,&nbsp;Greta Petazzoni,&nbsp;Davide Sassera,&nbsp;Gian Vincenzo Zuccotti,&nbsp;Claudio Bandi,&nbsp;Fausto Baldanti,&nbsp;Francesco Comandatore,&nbsp;Stefano Gaiarsa","doi":"10.1093/bioinformatics/btad571","DOIUrl":null,"url":null,"abstract":"<p><strong>Summary: </strong>Bacterial Healthcare-Associated Infections (HAIs) are a major threat worldwide, which can be counteracted by establishing effective infection control measures, guided by constant surveillance and timely epidemiological investigations. Genomics is crucial in modern epidemiology but lacks standard methods and user-friendly software, accessible to users without a strong bioinformatics proficiency. To overcome these issues we developed P-DOR, a novel tool for rapid bacterial outbreak characterization. P-DOR accepts genome assemblies as input, it automatically selects a background of publicly available genomes using k-mer distances and adds it to the analysis dataset before inferring a Single-Nucleotide Polymorphism (SNP)-based phylogeny. Epidemiological clusters are identified considering the phylogenetic tree topology and SNP distances. By analyzing the SNP-distance distribution, the user can gauge the correct threshold. Patient metadata can be inputted as well, to provide a spatio-temporal representation of the outbreak. The entire pipeline is fast and scalable and can be also run on low-end computers.</p><p><strong>Availability and implementation: </strong>P-DOR is implemented in Python3 and R and can be installed using conda environments. It is available from GitHub https://github.com/SteMIDIfactory/P-DOR under the GPL-3.0 license.</p>","PeriodicalId":8903,"journal":{"name":"Bioinformatics","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10533420/pdf/","citationCount":"1","resultStr":"{\"title\":\"P-DOR, an easy-to-use pipeline to reconstruct bacterial outbreaks using genomics.\",\"authors\":\"Gherard Batisti Biffignandi,&nbsp;Greta Bellinzona,&nbsp;Greta Petazzoni,&nbsp;Davide Sassera,&nbsp;Gian Vincenzo Zuccotti,&nbsp;Claudio Bandi,&nbsp;Fausto Baldanti,&nbsp;Francesco Comandatore,&nbsp;Stefano Gaiarsa\",\"doi\":\"10.1093/bioinformatics/btad571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Summary: </strong>Bacterial Healthcare-Associated Infections (HAIs) are a major threat worldwide, which can be counteracted by establishing effective infection control measures, guided by constant surveillance and timely epidemiological investigations. Genomics is crucial in modern epidemiology but lacks standard methods and user-friendly software, accessible to users without a strong bioinformatics proficiency. To overcome these issues we developed P-DOR, a novel tool for rapid bacterial outbreak characterization. P-DOR accepts genome assemblies as input, it automatically selects a background of publicly available genomes using k-mer distances and adds it to the analysis dataset before inferring a Single-Nucleotide Polymorphism (SNP)-based phylogeny. Epidemiological clusters are identified considering the phylogenetic tree topology and SNP distances. By analyzing the SNP-distance distribution, the user can gauge the correct threshold. Patient metadata can be inputted as well, to provide a spatio-temporal representation of the outbreak. The entire pipeline is fast and scalable and can be also run on low-end computers.</p><p><strong>Availability and implementation: </strong>P-DOR is implemented in Python3 and R and can be installed using conda environments. It is available from GitHub https://github.com/SteMIDIfactory/P-DOR under the GPL-3.0 license.</p>\",\"PeriodicalId\":8903,\"journal\":{\"name\":\"Bioinformatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10533420/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bioinformatics/btad571\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btad571","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 1

摘要

摘要:细菌性医疗保健相关感染(HAI)是世界范围内的一个主要威胁,可以通过建立有效的感染控制措施,在持续监测和及时流行病学调查的指导下加以应对。基因组学在现代流行病学中至关重要,但缺乏标准的方法和用户友好的软件,没有很强的生物信息学能力的用户可以访问。为了克服这些问题,我们开发了P-DOR,这是一种用于快速细菌爆发表征的新工具。P-DOR接受基因组组装作为输入,它使用k-mer距离自动选择公开可用基因组的背景,并在推断基于单核苷酸多态性(SNP)的系统发育之前将其添加到分析数据集。根据系统发育树拓扑结构和SNP距离确定流行病学集群。通过分析SNP距离分布,用户可以测量正确的阈值。还可以输入患者元数据,以提供疫情的时空表示。整个管道快速且可扩展,也可以在低端计算机上运行。可用性和实现:P-DOR在Python3和R中实现,可以使用conda环境进行安装。它可从GitHub获得https://github.com/SteMIDIfactory/P-DOR根据GPL-3.0许可证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

P-DOR, an easy-to-use pipeline to reconstruct bacterial outbreaks using genomics.

P-DOR, an easy-to-use pipeline to reconstruct bacterial outbreaks using genomics.

Summary: Bacterial Healthcare-Associated Infections (HAIs) are a major threat worldwide, which can be counteracted by establishing effective infection control measures, guided by constant surveillance and timely epidemiological investigations. Genomics is crucial in modern epidemiology but lacks standard methods and user-friendly software, accessible to users without a strong bioinformatics proficiency. To overcome these issues we developed P-DOR, a novel tool for rapid bacterial outbreak characterization. P-DOR accepts genome assemblies as input, it automatically selects a background of publicly available genomes using k-mer distances and adds it to the analysis dataset before inferring a Single-Nucleotide Polymorphism (SNP)-based phylogeny. Epidemiological clusters are identified considering the phylogenetic tree topology and SNP distances. By analyzing the SNP-distance distribution, the user can gauge the correct threshold. Patient metadata can be inputted as well, to provide a spatio-temporal representation of the outbreak. The entire pipeline is fast and scalable and can be also run on low-end computers.

Availability and implementation: P-DOR is implemented in Python3 and R and can be installed using conda environments. It is available from GitHub https://github.com/SteMIDIfactory/P-DOR under the GPL-3.0 license.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioinformatics
Bioinformatics 生物-生化研究方法
CiteScore
11.20
自引率
5.20%
发文量
753
审稿时长
2.1 months
期刊介绍: The leading journal in its field, Bioinformatics publishes the highest quality scientific papers and review articles of interest to academic and industrial researchers. Its main focus is on new developments in genome bioinformatics and computational biology. Two distinct sections within the journal - Discovery Notes and Application Notes- focus on shorter papers; the former reporting biologically interesting discoveries using computational methods, the latter exploring the applications used for experiments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信